INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
DFT study of solvation of Li + /Na + in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery |
Qi Liu(刘琦)†, Guoqiang Tan(谭国强), Feng Wu(吴锋), Daobin Mu(穆道斌), and Borong Wu(吴伯荣) |
1 Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract Choosing suitable solvent is the key technology for the electrochemical performance of energy storage device. Among them, vinylene carbonate (VC), fluoroethylene carbonate (FEC), and ethylene sulfite (ES) are the potential organic electrolyte solvents for lithium/sodium battery. However, the quantitative relation and the specific mechanism of these solvents are currently unclear. In this work, density functional theory (DFT) method is employed to study the lithium/sodium ion solvation in solvents of VC, ES, and FEC. We first find that 4VC-Li + , 4VC-Na + , 4ES-Li + , 4ES-Na + , 4FEC-Li + , and 4FEC-Na + are the maximum thermodynamic stable solvation complexes. Besides, it is indicated that the innermost solvation shells are consisted of 5VC-Li+ /Na + , 5ES-Li + /Na + , and 5FEC-Li + /Na + . It is also indicated that the Li + solvation complexes are more stable than Na + complexes. Moreover, infrared and Raman spectrum analysis indicates that the stretching vibration of O=\,C peak evidently shifts to high frequency with the Li + /Na + concentration reducing in nVC-Li + /Na + and nFEC-Li + /Na + solvation complexes, and the O=\,C vibration peak frequency in Na + solvation complexes is higher than that of Li + complexes. The S=\,O stretching vibration in nES-Li + /Na + solvation complexes moves to high frequency with the decrease of the Li + /Na + concentration, the S=\,O vibration in nES-Na + is higher than that in nES-Li + . The study is meaningful for the design of new-type Li/Na battery electrolytes.
|
Received: 26 October 2020
Revised: 08 December 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
82.20.Yn
|
(Solvent effects on reactivity)
|
|
82.45.Gj
|
(Electrolytes)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
Fund: Project supported by the International Science & Technology Cooperation of China (Grant No. 2016YFE0102200), the National Natural Science Foundation of China (Grant No. 51902024), the Fundamental Research Funds for the Central Universities, China, the National Postdoctoral Program for Innovative Talents of China (Grant No. BX20180038), China Postdoctoral Science Foundation (Grant No. 2019M650014), and Beijing Natural Science Foundation, China (Grant No. L182022). |
Corresponding Authors:
†Corresponding author. E-mail: liuqi985@bit.edu.cn
|
Cite this article:
Qi Liu(刘琦, Guoqiang Tan(谭国强), Feng Wu(吴锋), Daobin Mu(穆道斌), and Borong Wu(吴伯荣) DFT study of solvation of Li + /Na + in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery 2021 Chin. Phys. B 30 038203
|
1 Goodenough J B and Park K 2013 J. Am. Chem. Soc. 135 1167 2 Schmuch R, Wagner R, Horpel G, Placke T and Winter M 2018 Nat. Energy 3 267 3 Huang L X, Chen Y F, Li P J, Huan R, He J R, Wang Z G, Hao X, Liu J B, Zhang W L and Li Y R 2012 Acta Phys. Sin. 61 156103 (in Chinese) 4 Bai Y, Wang B and Zhang W F2011 Acta Phys. Sin. 60 068202 (in Chinese) 5 Yang Z, Zhang J, Kintnermeyer M C, Lu X, Choi D, Lemmon J P and Liu J 2011 Chem. Rev. 111 3577 6 Yabuuchi N, Kubota K, Dahbi M and Komaba S 2014 Chem. Rev. 114 11636 7 Hwang J Y, Myung S and Sun Y 2017 Chem. Soc. Rev. 46 3529 8 Xu K 2014 Chem. Rev. 114 11503 9 Liu Q, Xu H, Wu F, Mu D, Shi L, Wang L, Bi J and Wu B 2019 ACS Appl. Energy Mater. 2 8878 10 Ponrouch A, Monti D, Boschin A, Steen B, Johansson P and Palacin M R2015 J. Mater. Chem. 3 22 11 Wang Y and Balbuena P B 2005 Int. J. Quantum Chem. 102 724 12 Zhang S, Li W J, Ling S G, Li H, Zhou Z B and Chen L Q 2015 Chin. Phys. B 24 078201 13 Delpa S A, Borodina O, Olguina M, Eisnerb C G, Allena J L T and Jow R 2016 Electrochim. Acta 209 498 14 Zhang Y, Krishnamurthy D and Viswanathan V 2020 J. Electrochem. Soc. 167 070554 15 Liu Q, Mu D, Wu B, Wang L, Gai L and Wu F 2017 ChemSusChem 10 786 16 Shigenobu K, Dokko K, Watanabe M and Ueno K 2020 Phys. Chem. Chem. Phys. 22 15214 17 Qian Y, Niehoff P, Borner M, Grutzke M, Monnighoff X, Behrends P, Nowak S, Winter M and Schappacher F M 2016 J. Power Sources 329 31 18 Heine J, Hilbig P, Qi X, Niehoff P, Winter M and Bieker P2015 J. Electrochem. Soc. 162 A1094 19 Jaumann T, Balach J, Langklotz U, Sauchuk V, Fritsch M, Michaelis A, Teltevskij V, Mikhailova D, Oswald S, Klose M, Stephani G, Hauser R, Eckert J and Giebeler L2017 Energy Storage Mater. 6 26 20 Zhang B, Metzger M, Solchenbach S, Payne M, Meini S, Gasteiger H A, Garsuch A and Lucht B L 2015 J. Phys. Chem. C 119 11337 21 Zhu Z, Tang Y, Lv Z, Wei J, Zhang Y, Wang R, Zhang W, Xia H, Ge M and Chen X 2018 Angew. Chem. Int. Edit. 57 3656 22 Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A and Ohsawa Y 2011 ACS Appl. Mater. Inter. 3 4165 23 Ji L, Gu M, Shao Y, Li X, Engelhard M H, Arey B W, Wang W, Nie Z, Xiao J, Wang C, Zhang J G and Liu J 2014 Adv. Mater. 26 2901 24 Takenaka N, Sakai H, Suzuki Y, Uppula P and Nagaoka M 2015 J. Phys. Chem. C 119 18046 25 Lee Y, Lee J, Kim H, Kang K and Choi N 2016 J. Power Sources 320 49 26 Liu Q, Yang G, Liu S, Han M, Wang Z and Chen L 2019 ACS Appl. Mater. Interfaces 11 17435 27 Wang Z, Hofmann A and Hanemann T 2019 Electrochim. Acta 298 960 28 Brown Z L, Jurng S, Nguyen C C and Lucht B L 2018 ACS Appl. Energy Mater. 1 3057 29 Lee Y, Lee J, Lee J, Kim K, Cha A, Kang S, Wi T, Kang S J, Lee H and Choi N 2018 ACS Appl. Mater. Interfaces 10 15270 30 Men F, Zhong H, Song Z and Zhan H 2018 Mater. Chem. Phys. 212 131 31 Jote B A, Beyene T T, Sahalie N A, Weret M A, Olbassa B W, Wondimkun Z T, Berhe G B, Huang C, Su W and Hwang B J 2020 J. Power Sources 461 228102 32 Liu J, Zhou L, Yu W and Yu A 2020 J. Alloy Compd. 812 152064 33 Lin S and Zhao J 2020 ACS Appl. Mater. Interfaces 12 8316 34 Zeng G, Liu Y, Gu C, Zhang K, An Y, Wei C, Feng J and Ni J2020 Acta Phys. -Chim. Sin. 36 1905006 35 Zeng G, An Y, Xiong S and Feng J 2019 ACS Appl. Mater. Interfaces 11 23229 36 Rodriguez R, Loeffler K E, Nathan S S, Sheavly J K, Dolocan A, Heller A and Mullins C B 2017 ACS Energy Lett. 2 2051 37 Kuratani K, Uemura N, Senoh H, Takeshita H T and Kiyobayashi T 2013 J. Power Sources 223 175 38 Kuratani K, Kishimoto I, Nishida Y, Kondo R, Takeshita H T, Senoh H and Kiyobayashi T2016 J. Electrochem. Soc. 163 H417 39 Zhang Q, Liu S, Lin Z, Wang K, Chen M, Xu K and Li W 2020 Nano Energy 74 104860 40 Jin Y, Kneusels N H, Marbella L E, Castillo-Mart\'inez E, Magusin P C M M, Weatherup R S, Jonsson E, Liu T, Paul S and Grey C P 2018 J. Am. Chem. Soc. 140 9854 41 Zhang F, Wang C, Zhao D, Yang L, Wang P, Li W, Wang B and Li S 2020 Electrochim. Acta 337 135727 42 Wu C, Liao C, Li L and Yang J 2016 Chinese Chem. Lett. 27 1485 43 Zhang S, Yang G, Liu S, Li X, Wang X, Wang Z and Chen L 2020 Nano Energy 70 104486 44 Yang G, Li Y, Liu S, Zhang S, Wang Z and Chen L2019 Energy Storage Mater. 23 350 45 Wang Y and Balbuena P B 2005 Int. J. Quant. Chem. 102 724 46 Liu Q, Mu D, Wu B, Xu H, Wang L, Gai L, Shi L and Wu F2017 J. Electrochem. Soc. 164 A3144 47 Kang S, Park M H, Lee H and Han Y 2012 Electrochem. Commun. 23 83 48 Borodin O, Behl W and Jow T R 2013 J. Phys. Chem. C 117 8661 49 Zhang X, Pugh J K and Ross P N2001 J. Electrochem. Soc. 148 E183 50 Liu Q, Wu F, Mu D and Wu B 2020 Phys. Chem. Chem. Phys. 22 2164 51 Liu Q, Wu F, Mu D and Wu B. 2020 Chin. Phys. B 29 048202 52 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A et al.Petersson G A 2010 Gaussian 09, Gaussian, Inc., Wallingford, CT 53 Bolimowska E, Castiglione F, Devemy J, Rouault H, Mele A, Padua A A H and Santini C C 2018 J. Phys. Chem. B 122 8560 54 Hongyou K, Hattori T, Nagai Y, Tanaka T, Nii H and Shoda K 2013 J. Power Sources 243 72 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|