Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016201    DOI: 10.1088/1674-1056/abb30e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading

Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜)†, and Hai-Mei Xie(谢海妹)‡
Tianjin Key Laboratory of Modern Engineering Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
Abstract  Lithium-ion batteries suffer from mechano-electrochemical coupling problems that directly determine the battery life. In this paper, we investigate the electrode electrochemical performance under stress conditions, where seven tensile/compressive stresses are designed and loaded on electrodes, thereby decoupling mechanics and electrochemistry through incremental stress loads. Four types of multi-group electrochemical tests under tensile/compressive stress loading and normal package loading are performed to quantitatively characterize the effects of tensile stress and compressive stress on cycle performance and the kinetic performance of a silicon composite electrode. Experiments show that a tensile stress improves the electrochemical performance of a silicon composite electrode, exhibiting increased specific capacity and capacity retention rate, reduced energy dissipation rate and impedances, enhanced reactivity, accelerated ion/electron migration and diffusion, and reduced polarization. Contrarily, a compressive stress has the opposite effect, inhibiting the electrochemical performance. The stress effect is nonlinear, and a more obvious suppression via compressive stress is observed than an enhancement via tensile stress. For example, a tensile stress of 675 kPa increases diffusion coefficient by 32.5%, while a compressive stress reduces it by 35%. Based on the experimental results, the stress regulation mechanism is analyzed. Tensile stress loads increase the pores of the electrode material microstructure, providing more deformation spaces and ion/electron transport channels. This relieves contact compressive stress, strengthens diffusion/reaction, and reduces the degree of damage and energy dissipation. Thus, the essence of stress enhancement is that it improves and optimizes diffusion, reaction and stress in the microstructure of electrode material as well as their interactions via physical morphology.
Keywords:  prestress loading      silicon composite electrode      tensile stress enhancement      compressive stress suppression  
Received:  12 July 2020      Revised:  07 August 2020      Accepted manuscript online:  27 August 2020
PACS:  62.20.-x (Mechanical properties of solids)  
  82.47.Aa (Lithium-ion batteries)  
  46.80.+j (Measurement methods and techniques in continuum mechanics of solids)  
  65.40.gk (Electrochemical properties)  
Fund: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 11890680) and the National Natural Science Foundation of China (Grant No. 12022205).
Corresponding Authors:  Corresponding author. E-mail: zhangqian@tju.edu.cn Corresponding author. E-mail: xiehaimei@tju.edu.cn   

Cite this article: 

Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹) Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading 2021 Chin. Phys. B 30 016201

1 Ebner M, Marone F, Stampanoni M and Wood V 2013 Science 342 716
2 Zhang X Y, Chen H S and Fang D 2020 Int. J. Mech. Sci. 169 105323
3 Jangid M K and Mukhopadhyay A 2019 J. Mater. Chem. A 7 23679
4 Zhu T 2016 Chin. Phys. B 25 014601
5 Hofmann T, Westhoff D, Feinauer J, Andrä H, Zausch J, Schmidt V and Müller R 2020 Int. J. Solids Struct. 184 24
6 Palacin M R and de Guibert A 2016 Science 351 1253292
7 Zhang Y and Guo Z 2018 Acta Mech. Sin. 34 706
8 Xie H, Song H, Guo J G, Kang Y, Yang W and Zhang Q 2019 Carbon 144 342
9 Zuo P and Zhao Y P 2016 Extreme Mechanics Letters 9 467
10 Ji L and Guo Z 2018 Acta Mech. Sin. 34 187
11 Xie H, Zhang Q, Song H, Shi B and Kang Y 2017 J. Power Sources 342 896
12 Yang W, Xie H, Shi B, Song H, Qiu W and Zhang Q 2019 J. Power Sources 423 174
13 Hou J, Qu S, Yang M and Zhang J 2020 J. Power Sources 450 227697
14 Feng K, Li M, Liu W, Kashkooli A G, Xiao X, Cai M and Chen Z2018 Small 14
15 Hernandez C R, Etiemble A, Douillard T, Mazouzi D, Karkar Z, Maire E, Guyomard D, Lestriez B and Roué L 2018 Adv. Energy Mater. 8 1701787
16 Wang L, Duan X, Liu B, Li Q M, Yin S and Xu J 2020 J. Power Sources 448 227468
17 Zhu T, Fang X, Wang B, Shen S and Feng X 2019 Sci. China: Technol. Sci. 62 1385
18 Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y and Xu B X 2019 J. Power Sources 413 259
19 Eshghinejad A and Li J 2015 Mech. Mater. 91 343
20 Zhang Q, Tang C and Fu L 2019 Appl. Surf. Sci. 497 143723
21 Zhang K, Li Y, Wang F, Zheng B and Yang F 2019 Appl. Phys. Express 12 045004
22 Jin C, Li H, Song Y, Lu B, Soh A K and Zhang J 2019 Sci. China: Technol. Sci. 62 1357
23 Burebi Y, Zheng J and Qu S 2019 Sci. China: Technol. Sci. 62 1365
24 Lu Y, Zhang P, Wang F, Zhang K and Zhao X 2018 Electrochim. Acta 274 359
25 Gao X, Lu W and Xu J 2020 J. Power Sources 449 227501
26 McDowell M T, Ryu I, Lee S W, Wang C, Nix W D and Cui Y 2012 Adv. Mater. 24 6034
27 Lee S W, Lee H W, Ryu I, Nix W D, Gao H and Cui Y 2015 Nat. Commun. 6 7533
28 Gu M, Yang H, Perea D E, Zhang J G, Zhang S and Wang C M 2014 Nano Lett. 14 4622
29 Yang H, Liang W, Guo X, Wang C M and Zhang S 2015 Extreme Mechanics Letters 2 1
30 Piper D M, Yersak T A and Lee S H 2012 J. Electrochem. Soc. 160 A77
31 Raty\'nski M, Hamankiewicz B, Krajewski M, Boczar M and Czerwi\'nski A 2018 RSC Adv. 8 22546
32 Cannarella J and Arnold C B 2014 J. Power Sources 245 745
33 Wuensch M, Kaufman J and Sauer D U 2019 J. Energy Storage 21 149
34 Müller V, Scurtu R G, Memm M, Danzer M A and Wohlfahrt-Mehrens M 2019 J. Power Sources 440 227148
35 Xie H M, Guo J G, Song H B, Shi B Q and Kang Y L 2018 Energy Technol. 6 1788
36 Lemaitre J, Chaboche J L and Maji A K 1992 J. Eng. Mech. 119 642
37 Wang S B and Kang Y L2007 Mechanics of Materials (Beijing: Higher Education Press) pp. 145-146 (in Chinese)
38 Gere J M, Timoshenko S P and Saunders H 1984 J. Vib. Acoust. 108 483
39 Xie H M, Kang Y L, Song H B and Zhang Q 2019 J. Power Sources 424 100
40 Xie H M, Kang Y L, Song H B, Guo J G and Zhang Q 2020 Acta Mech. Sin.
41 Zeng W, Xing J, Chen J C M, Ng K Y S, Oshihara K and Cheng M M C 2018 Electrochim. Acta 281 282
42 Mussa A S, Klett M, Lindbergh G and Lindström R W 2018 J. Power Sources 385 18
43 Barsoukov E, Kim J H, Kim J H, Yoon C O and Lee H 1999 Solid State Ionics Diffusion & Reactions 116 249
44 Lu B, Ning C Q, Shi D X, Zhao Y F and Zhang J Q 2020 Chin. Phys. B 29
45 \cCapraz ö ö, Rajput S, White S and Sottos N R 2018 Exp. Mech. 58 561
46 Jiang Y, Mu D, Chen S, Wu B, Cheng K, Li L and Wu F 2016 J. Power Sources 325 630
47 Dai C, Li C, Huang H, Wang Z, Zhu X, Liao X, Chen X, Pan Y and Fang D 2019 Solid State Ionics 331 56
[1] A minimal model for the auxetic response of liquid crystal elastomers
Bingyu Yu(於冰宇), Yuanchenxi Gao(高袁晨曦), Bin Zheng(郑斌), Fanlong Meng(孟凡龙), Yu Fang(方羽), Fangfu Ye(叶方富), and Zhongcan Ouyang(欧阳钟灿). Chin. Phys. B, 2022, 31(10): 104601.
[2] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[3] Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite
Jiao-Hong Huang(黄焦宏), Ying-De Zhang(张英德), Nai-Kun Sun(孙乃坤), Yang Zhang(张扬), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2022, 31(4): 047503.
[4] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[5] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[6] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[7] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[8] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[9] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[10] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[11] Negative compressibility property in hinging open-cell Kelvin structure
Meng Ma(马梦), Xiao-Qin Zhou(周晓勤), Hao Liu(刘浩), and Hao-Cheng Wang(王浩成). Chin. Phys. B, 2021, 30(5): 056201.
[12] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[13] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[14] Atomistic study on tensile fracture of densified silica glass and its dependence on strain rate
Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立), Yi-Fan Xie(谢轶凡), and Yong Mei(梅勇). Chin. Phys. B, 2020, 29(12): 128101.
[15] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
No Suggested Reading articles found!