Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 038202    DOI: 10.1088/1674-1056/abd77e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations

Wei Hu(胡伟)1, Wenwei Luo(罗文崴)1,†, Hewen Wang(王鹤文)2, and Chuying Ouyang(欧阳楚英)1
1 Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China; 2 College of Chemistry and Chemical Engineering, Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China
Abstract  Understanding the mechanism of the interfacial reaction between the cathode material and the electrolyte is a significant work because the interfacial reaction is an important factor affecting the stability, capacity, and cycling performance of Li-ion batteries. In this work, spin-polarized density functional theory calculations with on-site Coulomb energy have been employed to study the adsorption of electrolyte components propylene carbonate (PC) on the LiMn2O4 (100) surface. The findings show that the PC molecule prefers to interact with the Mn atom on the LiMn2O4 (100) surface via the carbonyl oxygen (O c), with the adsorption energy of -1.16 eV, which is an exothermic reaction. As the adsorption of organic molecule PC increases the Mn atoms coordination with O atoms on the (100) surface, the Mn3 + ions on the surface lose charge and the reactivity is substantially decreased, which improves the stability of the surface and benefits the cycling performance.
Keywords:  Li-ions batteries      electrolyte      density functional theory      surface      propylene carbonate  
Received:  20 October 2020      Revised:  24 November 2020      Accepted manuscript online:  30 December 2020
PACS:  82.47.Aa (Lithium-ion batteries)  
  81.05.Hd (Other semiconductors)  
  82.20.Ej (Quantum theory of reaction cross section)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51962010).
Corresponding Authors:  Corresponding author. E-mail: luowenwei@jxnu.edu.cn   

Cite this article: 

Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英) Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations 2021 Chin. Phys. B 30 038202

1 Goodenough J B and Park K 2013 J. Am. Chem. Soc. 135 1167
2 Fergus J W 2010 J. Power Sources 195 939
3 Lu L G, Han X B, Li J Q, Hua J F and Ouyang M G 2013 J. Power Sources 226 272
4 Armand M and Tarascon J M 2008 Nature 451 652
5 Wu M S, Xu B and Ouyang C Y 2016 Chin. Phys. B 25 018206
6 Shi S Q, Ouyang C Y, Lei M S and Tang W H 2007 J. Power Sources 171 908
7 Moriwake H, Kuwabara A, Fisher C A J, Huang R, Hitosugi T, Ikuhara Y H, Oki H and Ikuhara Y 2013 Adv. Mater. 25 618
8 Yahia H B, Shikano M and Kobayashi H 2013 Chem.Mater. 25 3687
9 Ning F H, Li S, Xu B and Ouyang C Y 2014 Solid State Ionics 263 46
10 Ning F H, Xu B, Shi J, Wu M S, Hu Y Q and Ouyang C Y 2016 J. Phys. Chem. C 120 18428
11 Liu H, Tong Y, Kuwata N, Osawa M, Kawamura J and Ye S 2009 J. Phys. Chem. C 113 20531
12 Ouyang C Y, Shi S Q and Lei M S 2009 J. Alloy. Compd. 474 370
13 Ouyang C Y, Du Y L, Shi S Q and Lei M S 2009 Phys. Lett. A 373 2796
14 Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J and Chen L Q 2004 Europhys. Lett. 67 28
15 Ouyang C Y, Zeng X M, S?ljivancanin Z and Baldereschi A 2010 J. Phys. Chem. C 114 4756
16 Xiao L, Xiao J, Yu X, Yan P, Zheng J, Engelhard M, Bhattacharya P, Wang C, Yang X Q and Zhang J G 2015 Nano Energy 16 143
17 Wang Z Q, Chen Y C and Ouyang C Y 2014 Phys. Lett. A 378 2449
18 Xiao R J, Li H and Chen L Q 2012 Chem. Mater. 24 4242
19 Shi S Q, Liu L J, Ouyang C Y, Wang D S, Wang Z Q, Chen L Q and Huang X J 2003 Phys. Rev. B 68 195108
20 Ouyang C Y, Shi S Q, Wang Z X, Huang X J and Chen L Q 2004 Phys. Rev. B 69 104303
21 Takahashi M, Tobishima S, Takei K and Sakurai Y 2002 Solid State Ionics 148 283
22 Zhang H, Tang Y H, Shen J Q, Xin X G, Cui L X, Chen L J, Ouyang C Y, Shi S Q and Chen L Q 2011 Appl. Phys. A 104 529
23 Chen Y C, Xie K, Pan Y, Zheng C M and Wang H L 2011 Chin. Phys. B 20 28201
24 Lee M J, Lee S, Oh P, Kim Y and Cho J 2014 Nano Lett. 14 993
25 Zhang Z F, Chen Z L, Wang G J, Ren H, Pan M, Xiao L L, Wu K C, Zhao L T, Yang J Q, Wu Q G, Shu J, Wang D J, Zhang H L, Huo N and Li J 2016 Phys. Chem. Chem. Phys. 18 6893
26 Liu W W, Wang D, Wang Z F, Deng J G, Lau W and Zhang Y N 2017 Phys. Chem. Chem. Phys. 19 6481
27 Komaba S, Kaplan B, Ohtsuka T, Kataoka Y, Kumagai N and Groult H 2003 J. Power Sources 119-121 378
28 Leggesse E G, Tsau K, Liu Y, Nachimuthu S and Jiang J 2016 Electrochim. Acta 210 61
29 Han Z H, Jia X Z, Zhan H and Zhou Y H 2013 Electrochim. Acta 114 772
30 Zhou F, Cococcioni M, Marianetti C A, Morgan D and Ceder G 2004 Phys. Rev. B 70 235121
31 Hautier G, Ong S P, Jain A, Moore C J and Ceder G 2012 Phys. Rev. B 85 155208
32 Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 18212
33 Morgan B J and Watson G W 2007 Surf. Sci. 601 5034
34 Hu W, Wang H W, Luo W W, Xu B and Ouyang C Y 2020 Solid State Ionics 347 115257
35 Ouyang C Y, \vSljivan\vcanin \vZ and Baldereschi A 2010 J. Chem. Phys. 133 204701
36 Shi Y S, Zhu S M, Zhu C L, Li Y, Chen Z X and Zhang D 2015 Electrochim. Acta 154 17
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[4] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[7] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[8] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[9] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[10] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[11] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[12] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[13] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[14] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[15] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
No Suggested Reading articles found!