Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 098201    DOI: 10.1088/1674-1056/ac11de
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries

Siyuan Yang(杨思源)1,2, Chuanwei Li(李传崴)1,2,†, Zhifeng Qi(齐志凤)1,2, Lipan Xin(辛立攀)1,2, Linan Li(李林安)1,2, Shibin Wang(王世斌)1,2, and Zhiyong Wang(王志勇)1,2,‡
1 Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China;
2 Tianjin Key Laboratory of Modern Engineering Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
Abstract  Silicon-based carbon composites are believed as promising anodes in the near future due to their outstanding specific capacity and relatively lower volume effect compared to pure silicon anodes. Herein, a multilayer spherical core-shell (M-SCS) electrode with a graphite framework prepared with Si@O-MCMB/C nanoparticles is developed, which aims to realize chemically/mechanically stability during the lithiation/delithiation process with high specific capacity. An electrochemical-/mechanical-coupling model for the M-SCS structure is established with various chemical/mechanical boundary conditions. The simulation of finite difference method (FDM) has been conducted based on the proposed coupling model, by which the diffusion-induced stress along both the radial and the circumferential directions is determined. Moreover, factors that influence the diffusion-induced stress of the M-SCS structure have been discussed and analyzed in detail.
Keywords:  multi-layer spherical core-shell electrode      diffusion-induced stress  
Received:  19 May 2021      Revised:  02 July 2021      Accepted manuscript online:  07 July 2021
PACS:  82.47.Aa (Lithium-ion batteries)  
  47.11.Bc (Finite difference methods)  
  82.45.Fk (Electrodes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12072229 and 11602167).
Corresponding Authors:  Chuanwei Li, Zhiyong Wang     E-mail:  licw16@tju.edu.cn;zywang@tju.edu.cn

Cite this article: 

Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇) Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries 2021 Chin. Phys. B 30 098201

[1] AbdelHami A A, Soh J H, Yu Y and Ying J Y 2018 Nano Energy 44 399
[2] Goodenough J B and Park K S 2013 J. Am. Chem. Soc. 135 1167
[3] Li J L, Daniel C and Wood D 2011 Journal of Power Sources 196 2452
[4] Liu H T, Shan Z Q, Huang W L, Wang D D, Lin Z J, Cao Z J, Chen P, Meng S X and Chen L 2018 ACS Appl. Mater. Interfaces 10 4715
[5] Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212
[6] Hsu C M, Connor S T, Tang M X and Cui Y 2008 Appl. Phys. Lett. 93 133109
[7] Lu J, Chen Z W, Pan F, Cui Y and Amine K 2018 Electrochem. Energy Rev. 1 35
[8] Verma P, Maire P and Novák P 2010 Electrochimica Acta 55 6332
[9] Wang P, Chen H S, Li N, Zhang X Y, Jiao S Q, Song W L and Fang D N 2018 Energy Storage Materials 13 103
[10] Liu B N, Lu H, Chu G, Luo F, Zheng J Y, Chen S M and Li H 2018 Chin. Phys. B 27 088201
[11] Obrovac M N and Christensen L 2004 Electrochem. Solid State Lett. 7 A93
[12] Sokolnikoff I S and Specht R D 1956 Mathematical theory of elasticity (New York: McGraw-Hill)
[13] Cui Z W, Gao F and Qu J M 2013 J. Mech. Phys. Solids 61 293
[14] Bower A F, Chason E, Guduru P R and Sheldon B W 2015 Acta Materialia 98 229
[15] Huang S, Fan F, Li J, Zhang S L and Zhu T 2013 Acta Materialia 61 4354
[16] Lu B, Song Y C and Zhang J Q 2015 Journal of Power Sources 289 168
[17] Lu Y J, Zhang P L, Wang F H, Zhang K and Zhao X 2018 Electrochimica Acta 274 359
[18] Di L C V, Rejovitzky E and Anand L 2015 International Journal of Solids and Structures 67 283
[19] Li Y, Zhang K, Zheng B L and Yang F Q 2016 International Journal of Solids and Structures 87 81
[20] Li Y, Zhang K, Zheng B L and Yang F Q 2016 Journal of Power Sources 319 168
[21] Ryu I, Lee S W, Gao H J, Cui Y and Nix W D 2014 Journal of Power Sources 255 274
[22] Ren W F, Wang Y H, Tan Q Q, Zhong Z Y and Su F B 2016 Journal of Power Sources 332 88
[23] Xu R T, Wang G, Zhou T F, Zhang Q, Cong H P, Xin S, Rao J, Zhang C F, Liu Y K and Guo Z P 2017 Nano Energy 39 253
[24] Du F H, Wang K X and Chen J S 2016 J. Mater. Chem. A 4 32
[25] Tarascon J M and Armand M 2011 Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group (UK: Nature Publishing Group)
[26] McDowell M T, Lee S W, Nix W D and Cui Y 2013 Adv. Mater. 25 4966
[27] Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y Y W and Xu B X 2019 J. Power Sources 413 259
[28] Aifantis K E, Hackney S A, and Kumar R V 2010 High energy density lithium batteriess (Weinheim: Wiley-VCH)
[29] Wei P F, Zhou J Q, Pang X M, Liu H X, Deng K J, Wang G X, Wu Y B and Chen B B 2013 J. Mater. Chem. A 2 1128
[30] Fu R J, Xiao M and Choe S Y 2013 J. Power Sources 224 211
[31] Mykhaylov M, Ganser M, Klinsmann M, Hildebrand F E, Guz I and McMeeking R M 2019 J. Mech. Phys. Solids 123 207
[32] Hao F and Fang D N 2013 J. Appl. Phys. 113 013507
[33] Zhao K J, Pharr M, Vlassak J J and Suo Z G 2010 J. Appl. Phys. 108 073517
[34] Shodja H M, Shahryari B, Azizi P and Roumi F 2020 J. Electrochem. Soc. 167 130540
[35] Yang Y, Wang Z X, Zhou Y, Guo H J and Li X H 2017 Mater. Lett. 199 84
[36] Ko M, Chae S, Ma J, Kim N, Lee H W, Cui Y and Cho J 2016 Nature Energy 1 1
[37] Lu W J, Guo X T, Luo Y Q, Li Q, Zhu R M and Pang H 2019 Chem. Eng. J. 355 208
[38] Prussin S 1961 J. Appl. Phys. 32 1876
[39] Deshpande R, Cheng Y-Tse, Verbrugge M W and Timmons A 2011 J. Electrochem. Soc. 158 A718
[40] Hao F and Fang D N 2013 J. Electrochem. Soc. 160 A595
[41] Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M and Shi S Q 2020 Chin. Phys. B 29 068202
[42] Zhang X C, Shyy W and Sastry A M 2007 J. Electrochem. Soc. 154 A910
[43] Wang W L, Lee S and Chen JR 2002 J. Appl. Phys. 91 9584
[44] Shi D H, Xiao X R, Huang X S and Kia H 2011 Journal of Power Sources 196 8129
[45] Chen C F, Barai P and Mukherjee P P 2014 J. Electrochem. Soc. 161 A2138
[46] Tian H K, Chakraborty A, Talin A A, Eisenlohr P and Qi Y 2020 J. Electrochem. Soc. 167 090541
[1] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[2] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[3] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[4] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[5] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[6] Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(7): 078201.
[7] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[8] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[9] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[10] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[11] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[12] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[13] DFT study of solvation of Li + /Na + in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery
Qi Liu(刘琦, Guoqiang Tan(谭国强), Feng Wu(吴锋), Daobin Mu(穆道斌), and Borong Wu(吴伯荣). Chin. Phys. B, 2021, 30(3): 038203.
[14] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
[15] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
No Suggested Reading articles found!