CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Metal-to-insulator transition in two-dimensional ferromagnetic monolayer induced by substrate |
Can Qi(齐灿)1,2, Jun Hu(胡军)1,2 |
1 School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
2 Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China |
|
|
Abstract Two-dimensional (2D) ferromagnetic (FM) materials have great potential for applications in next-generation spintronic devices. Since most 2D FM materials come from van der Waals crystals, stabilizing them on a certain substrate without killing the ferromagnetism is still a challenge. Through systematic first-principles calculations, we proposed a new family of 2D FM materials which combines TaX (X=S, Se or Te) monolayer and Al2O3(0001) substrate. The TaX monolayers provide magnetic states and the Al2O3(0001) substrate stabilizes the former. Interestingly, the Al2O3(0001) substrate leads to a metal-to-insulator transition in the TaX monolayers and induces a band gap up to 303 meV. Our study paves the way to explore promising 2D FM materials for practical applications in spintronics devices.
|
Received: 19 March 2018
Revised: 18 April 2018
Accepted manuscript online:
|
PACS:
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574223), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150303), and the Jiangsu Specially-Appointed Professor Program of Jiangsu Province, China. |
Corresponding Authors:
Jun Hu
E-mail: jhu@suda.edu.cn
|
Cite this article:
Can Qi(齐灿), Jun Hu(胡军) Metal-to-insulator transition in two-dimensional ferromagnetic monolayer induced by substrate 2018 Chin. Phys. B 27 077106
|
[1] |
Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I and Firsov A 2004 Science 306 666
|
[2] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[3] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[4] |
Novoselov K, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
|
[5] |
Mak K F, Lee D, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[6] |
Li L K, Yu Y J, Ye G J, Ge Q Q, Qu X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
|
[7] |
Naguib M, Mochalin V N, Barsoum M W and Gogotsi 2014 Adv. Mater. 26 992
|
[8] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[9] |
Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
|
[10] |
Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
|
[11] |
Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
|
[12] |
Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
|
[13] |
Lado J L and Fernández-Rossier J 2017 2D Mater. 4 035002
|
[14] |
Zhang S H and Liu B G 2017 arXiv 1706.08943
|
[15] |
Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M and Batzill M 2018 Nat. Nanotechnol. 13 289
|
[16] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[17] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[18] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[19] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[20] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[21] |
Wu R Q and Freeman A J 1999 J. Magn. Magn. Mater. 200 498
|
[22] |
Stierle A, Renner F, Streitel R, Dosch H, Drube W and Cowie B C 2004 Science 303 1652
|
[23] |
Heinrich A J, Gupta J A, Lutz C P and Eigler D M 2004 Science 306 466
|
[24] |
Kresse G, Schmid M, Napetschnig E, Shishkin M, Köhler L and Varga P 2005 Science 308 1440
|
[25] |
Gautier M, Fenaud G, Van L P, Villette B, Pollak M, Thromat N, Jollet F and Duraud J P 1994 J. Am. Ceram. Soc. 77 323
|
[26] |
Zhao G, Smith J, Raynolds J and Srolovitz D J 1996 Interface Sci. 3 289
|
[27] |
Lodziana Z and Norskov J K 2001 J. Chem. Phys. 115 11261
|
[28] |
Ding Y, Wang Y, Ni J, Shi L, Shi S and Tang W 2011 Physica B 406 2254
|
[29] |
Manchanda P, Sharma V, Yu H B, Sellmyer D J and Skomski R 2015 Appl. Phys. Lett. 107 032402
|
[30] |
Wei W G, Wang H, Zhang K, Liu H, Kou Y F, Chen J J, Du K, Zhu Y Y, Hou D L, Wu R Q, Yin L F and Shen J 2015 Chin. Phys. Lett. 32 087504
|
[31] |
Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 087501
|
[32] |
Tang W, Sanville E and Henkelman G 2009 J. Phys.:Condens. Matter 21 084204
|
[33] |
Masood H T, Muhammad Z, Habib M, Wang D M and Wang D L 2017 Chin. Phys. B 26 067503
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|