Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017101    DOI: 10.1088/1674-1056/26/1/017101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure and magnetic properties of rare-earth perovskite gallates from first principles

A Dahani1,2, H Alamri3, B Merabet1,4, A Zaoui1, S Kacimi1, A Boukortt5, M Bejar6
1. Laboratoire de Physique Computationnelle des Matériaux, UniversitéDjillali Liabés de Sidi Bel-Abbés, Sidi Bel-Abbés 22000, Algeria;
2. UniversitéMoulay Tahar, Facultéde Technologie, Saida 20000, Algeria;
3. Umm Al-Qura University, Physics Department-University College, Makkah, Saudi Arabia;
4. UniversitéMustapha Stambouli, Facultéde Technologie, Mascara 29000, Algeria;
5. Elaboration Characterization Physico-Mechanics of Materials and Metallurgical Laboratory ECP3M, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University of Mostaganem, Mostaganem 27000, Algeria;
6. Laboratoire de Physique Appliquée, Facultédes Sciences, Universitéde Sfax, Sfax 3000, Tunisia
Abstract  The density functional calculation is performed for centrosymmetric (La-Pm) GaO3 rare earth gallates, using a full potential linear augmented plane wave method with the LSDA and LSDA+U exchange correlation to treat highly correlated electrons due to the very localized 4f orbitals of rare earth elements, and explore the influence of U=0.478 Ry on the magnetic phase stability and the densities of states. LSDA+U calculation shows that the ferromagnetic (FM) state of RGaO3 is energetically more favorable than the anti-ferromagnetic (AFM) one, except for LaGaO3 where the NM state is the lowest in energy. The energy band gaps of RGaO3 are found to be in the range of 3.8-4.0 eV, indicating the semiconductor character with a large gap.
Keywords:  DFT+U+SO      strongly correlated electron systems      magnetism      rare earth gallates perovskites  
Received:  26 July 2016      Revised:  28 September 2016      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  67.80.dk (Magnetic properties, phases, and NMR)  
Corresponding Authors:  B Merabet     E-mail:  boualem19985@yahoo.fr

Cite this article: 

A Dahani, H Alamri, B Merabet, A Zaoui, S Kacimi, A Boukortt, M Bejar Electronic structure and magnetic properties of rare-earth perovskite gallates from first principles 2017 Chin. Phys. B 26 017101

[1] Zhou D, Chen Y, Zhang D, Liu H, Hu Y and Gong S 2004 Sensor Actuat. A 116 450
[2] Benziada-Taïbi L 2005 Mater. Sci. Forum 492-493 114
[3] Hu T, Uusimäki A, Jantunen H, Leppävuori, Soponmanee K S and Sirisoonthorn S 2005 Ceram. Int. 31 85
[4] Lee B D, Lee H R, Yoon K H and Cho Y S 2005 Ceram. Int. 31 143
[5] Cho W W, Ohsato H and Zouganelis G 2006 J. Eur. Ceram. Soc. 26 1865
[6] Kumagai S, Wakino K, Ando A and Kitazawa T 2006 J. Eur. Ceram. Soc. 26 1817
[7] Wang S, Zhang S, Zhou X, Li B and Chen Z 2006 Mater. Lett. 60 909
[8] Pe na M A and Fierro J L G 2001 Chem. Rev. 101 7
[9] Russo N, Fino D, Saracco G and Specchia V 2005 J. Catal. 229 459
[10] Smyth D M 1985 Ann. Rev. Mater. Sci. 15 329
[11] Tsuda N, Nasu K, Fujimori A and Siratori K 2000 Electronic Conduction in Oxides (2nd edn.) (Berlin:Springer-Verlag) p. 365
[12] Mattheiss L F 1972 Phys. Rev. B 6 4718
[13] Wqllan E O and Kqehler W C 1955 Phys. Rev. Lett. 100 2
[14] Battye F L, Höchst H and Goldmann A 1976 Solid State Commun. 19 269
[15] Lightsey P A 1973 Phys. Rev. B 8 3586
[16] Pimenov A, Mukhin A A, Ivanov V Y, Travkin V D, Balbashov A M and Loidl A 2006 Nature Phys. 2 97
[17] Senff D, Link P, Hradil K, Hiess A, Regnault L P, Sidis Y, Aliouane N and Argyriou D N 2007 Phys. Rev. Lett. 98 137206
[18] Aguilar R V, Sushkov A B, Zhang G L, Choi Y J, Cheong S W and Drew H D 2007 Phys. Rev. B 76 060404
[19] Pimenov A, Shuvaev A M, Mukhin A A and Loidl A 2008 J. Phys.:Condens. Matter 20 434209
[20] Alonso J A, Martinez-Lope M J, Casais M T, Aranda M A G and Fernandez-Diaz M T 1999 Am. Chem. Soc. 121 4754
[21] Piamonteze C, Tolentino H C N, Ramos A Y, Massa N E, Alonso J A, Martinez-Lope M J and Casais M T 2002 Physica B 320 71
[22] Senyshyn A, Trots D M, Engel J M, Vasylechko L, Ehrenberg H, Hansen T, Berkowski M and Fuess H 2009 J. Phys.:Condens. Matter 21 145405
[23] Parveen A and Gaur N K 2012 Solid State Sci. 14 814
[24] Glowacki M, Runka T, Domukhovski V, Diduszko R, Mirkowska M, Berkowski M and Dabrowski B 2011 J. Alloys Compd. 509 1756
[25] Ishihara T, Eto H and Yan J W 2011 J. Hydrogen Energy 36 1862
[26] Vasylechko L, Pivak Y, Senyshyn A, Savytskii D, Berkowski M, Borrmann H, Knapp M, and Paulmann C 2005 J. Solid State Chem. 178 270
[27] Senyshyn A, Schnelle W, Vasylechko L, Ehrenberg H and Berkowski M 2007 J. Phys.:Condens. Matter 19 156214
[28] Parveen A, Srivastava A and Gaur N K 2011 Am. Inst. Phys. 1393 291
[29] Mathews M, Houwman E P, Boschker H, Rijnders G and Blank D H A 2010 J. Appl. Phys. 107 013904
[30] Reshak A H, Piasecki M, Auluck S, Kityk I V, Khenata R, Andriyevsky B, Cobet C, Esser N, Majchrowski A, Świrkowicz M, Diduszko R and Szyrski W 2009 J. Phys. Chem. B 113 15237
[31] Piasecki M, Andriyevsky B, Cobet C, Esser N, Kityk I V, Świrkowicz M and Majchrowski A 2010 Opt. Commun. 283 3998
[32] Senyshyn A, Ehrenberg H, Vasylechko L, Gale J D and Bismayer U 2005 J. Phys.:Condens. Matter 17 6217
[33] T Tohei, Moriwake H, Murata H, Kuwabara A, Hashimoto R, Yamamoto T and Tanaka I 2009 Phys. Rev. B 79 144125
[34] Novak P, Knizek K, Marysko M, Jirak Z and Kune J 2013 Phys. Rev. B 87 205139
[35] Hasni W, Boukortt A, Bekkouche B, Kacimi S, Djermouni M and Zaoui A 2012 Physica B 407 901
[36] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 Wien2K, An Augmented Plane Wave Plus Local Orbitals Program For Calculating Crystal Properties, Vienna University of Technology, Vienna
[37] Sjöstedt E, Nordstrom L and Singh D J 2000 Solid State Commun. 114 15
[38] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[39] Anisimov V I and Gunnarsson O 1991 Phys. Rev. B 43 7570
[40] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 5390
[41] Anismov V I and Gunnarsson O 1991 Phys. Rev. B 43 7570
[42] Madsen G K H and Nova'k P 2005 Eur. Phys. Lett. 69 777
[43] Howard C J and Kennedy B J 1999 J. Phys:Condens. Matter 11 3229
[44] Kajitani M, Matsuda M, Hoshikawa A, Oikawa K I, Torii S, Kamiyama T, Izumi F and Miyake M 2003 Chem. Mater. 15 3468
[45] Senyshyn A, Engel J M, Oswald I D H, Vasylechko L, Berkowski M 2009 Z. Kristallogr. Suppl. 30 341
[46] Parveen A, Srivastava A and Gaur N K 2011 Solid State Phys. 1349 975
[47] Vasylechko L, Matkovski A, Suchocki A, Savytskii D and Syvorotka I 1999 J. Alloys Compd. 286 213
[48] Ubic R and Subodh G 2009 J. Alloys Compd. 488 374
[49] Stan M, Armstrong T J, Butt D P, Wallace T C S, Park Y S, Haertling C L, Hartmann T and Hanrahan R J J 2002 J. Am. Ceram. Soc. 85 2811
[50] Vasylechko L O, Niewa R, Senyshyn A T, Pivak Y, Savytskii D, Knapp M and Bähtz C 2002 Hasylab. Ann. Rep. 1 223
[51] Sasaura M, Mukaida M and Miyazawa S 1990 Appl. Phys. Lett. 57 2728
[52] Vasylechko L, Akselrud L, Morgenroth W, Bismayer U, Matkovskii A and Savytskii D 2000 J. Alloys Compd. 297 46
[53] Piasecki M, Andriyevsky B, Cobet C, Esser N, Kityk I V, Świrkowicz M and Majchrowski A 2010 Opt. Commun. 283 3998
[54] Senyshyn A, Vasylechko L, Knapp M, Bismayer U, Berkowski M and Matkovskii A 2004 J. Alloys Compd. 382 84
[55] Senyshyn A, Ehrenberg H, Vasylechko L, Gale J D and Bismayer U 2005 J. Phys.:Condens. Matter 17 6217
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[4] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[5] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[6] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[7] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[8] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[9] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
[10] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[11] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[12] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[13] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[14] Structure and frustrated magnetism of the two-dimensional triangular lattice antiferromagnet Na2BaNi(PO4)2
Fei Ding(丁飞), Yongxiang Ma(马雍翔), Xiangnan Gong(公祥南), Die Hu(胡蝶), Jun Zhao(赵俊), Lingli Li(李玲丽), Hui Zheng(郑慧), Yao Zhang(张耀), Yongjiang Yu(于永江), Lichun Zhang(张立春), Fengzhou Zhao(赵风周), and Bingying Pan(泮丙营). Chin. Phys. B, 2021, 30(11): 117505.
[15] Carrier and magnetism engineering for monolayer SnS2 by high throughput first-principles calculations
Qing Zhan(詹庆), Xiaoguang Luo(罗小光), Hao Zhang(张皓), Zhenxiao Zhang(张振霄), Dongdong Liu(刘冬冬), and Yingchun Cheng(程迎春). Chin. Phys. B, 2021, 30(11): 117105.
No Suggested Reading articles found!