CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic structure and magnetic properties of rare-earth perovskite gallates from first principles |
A Dahani1,2, H Alamri3, B Merabet1,4, A Zaoui1, S Kacimi1, A Boukortt5, M Bejar6 |
1. Laboratoire de Physique Computationnelle des Matériaux, UniversitéDjillali Liabés de Sidi Bel-Abbés, Sidi Bel-Abbés 22000, Algeria; 2. UniversitéMoulay Tahar, Facultéde Technologie, Saida 20000, Algeria; 3. Umm Al-Qura University, Physics Department-University College, Makkah, Saudi Arabia; 4. UniversitéMustapha Stambouli, Facultéde Technologie, Mascara 29000, Algeria; 5. Elaboration Characterization Physico-Mechanics of Materials and Metallurgical Laboratory ECP3M, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University of Mostaganem, Mostaganem 27000, Algeria; 6. Laboratoire de Physique Appliquée, Facultédes Sciences, Universitéde Sfax, Sfax 3000, Tunisia |
|
|
Abstract The density functional calculation is performed for centrosymmetric (La-Pm) GaO3 rare earth gallates, using a full potential linear augmented plane wave method with the LSDA and LSDA+U exchange correlation to treat highly correlated electrons due to the very localized 4f orbitals of rare earth elements, and explore the influence of U=0.478 Ry on the magnetic phase stability and the densities of states. LSDA+U calculation shows that the ferromagnetic (FM) state of RGaO3 is energetically more favorable than the anti-ferromagnetic (AFM) one, except for LaGaO3 where the NM state is the lowest in energy. The energy band gaps of RGaO3 are found to be in the range of 3.8-4.0 eV, indicating the semiconductor character with a large gap.
|
Received: 26 July 2016
Revised: 28 September 2016
Accepted manuscript online:
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
67.80.dk
|
(Magnetic properties, phases, and NMR)
|
|
Corresponding Authors:
B Merabet
E-mail: boualem19985@yahoo.fr
|
Cite this article:
A Dahani, H Alamri, B Merabet, A Zaoui, S Kacimi, A Boukortt, M Bejar Electronic structure and magnetic properties of rare-earth perovskite gallates from first principles 2017 Chin. Phys. B 26 017101
|
[1] |
Zhou D, Chen Y, Zhang D, Liu H, Hu Y and Gong S 2004 Sensor Actuat. A 116 450
|
[2] |
Benziada-Taïbi L 2005 Mater. Sci. Forum 492-493 114
|
[3] |
Hu T, Uusimäki A, Jantunen H, Leppävuori, Soponmanee K S and Sirisoonthorn S 2005 Ceram. Int. 31 85
|
[4] |
Lee B D, Lee H R, Yoon K H and Cho Y S 2005 Ceram. Int. 31 143
|
[5] |
Cho W W, Ohsato H and Zouganelis G 2006 J. Eur. Ceram. Soc. 26 1865
|
[6] |
Kumagai S, Wakino K, Ando A and Kitazawa T 2006 J. Eur. Ceram. Soc. 26 1817
|
[7] |
Wang S, Zhang S, Zhou X, Li B and Chen Z 2006 Mater. Lett. 60 909
|
[8] |
Pe na M A and Fierro J L G 2001 Chem. Rev. 101 7
|
[9] |
Russo N, Fino D, Saracco G and Specchia V 2005 J. Catal. 229 459
|
[10] |
Smyth D M 1985 Ann. Rev. Mater. Sci. 15 329
|
[11] |
Tsuda N, Nasu K, Fujimori A and Siratori K 2000 Electronic Conduction in Oxides (2nd edn.) (Berlin:Springer-Verlag) p. 365
|
[12] |
Mattheiss L F 1972 Phys. Rev. B 6 4718
|
[13] |
Wqllan E O and Kqehler W C 1955 Phys. Rev. Lett. 100 2
|
[14] |
Battye F L, Höchst H and Goldmann A 1976 Solid State Commun. 19 269
|
[15] |
Lightsey P A 1973 Phys. Rev. B 8 3586
|
[16] |
Pimenov A, Mukhin A A, Ivanov V Y, Travkin V D, Balbashov A M and Loidl A 2006 Nature Phys. 2 97
|
[17] |
Senff D, Link P, Hradil K, Hiess A, Regnault L P, Sidis Y, Aliouane N and Argyriou D N 2007 Phys. Rev. Lett. 98 137206
|
[18] |
Aguilar R V, Sushkov A B, Zhang G L, Choi Y J, Cheong S W and Drew H D 2007 Phys. Rev. B 76 060404
|
[19] |
Pimenov A, Shuvaev A M, Mukhin A A and Loidl A 2008 J. Phys.:Condens. Matter 20 434209
|
[20] |
Alonso J A, Martinez-Lope M J, Casais M T, Aranda M A G and Fernandez-Diaz M T 1999 Am. Chem. Soc. 121 4754
|
[21] |
Piamonteze C, Tolentino H C N, Ramos A Y, Massa N E, Alonso J A, Martinez-Lope M J and Casais M T 2002 Physica B 320 71
|
[22] |
Senyshyn A, Trots D M, Engel J M, Vasylechko L, Ehrenberg H, Hansen T, Berkowski M and Fuess H 2009 J. Phys.:Condens. Matter 21 145405
|
[23] |
Parveen A and Gaur N K 2012 Solid State Sci. 14 814
|
[24] |
Glowacki M, Runka T, Domukhovski V, Diduszko R, Mirkowska M, Berkowski M and Dabrowski B 2011 J. Alloys Compd. 509 1756
|
[25] |
Ishihara T, Eto H and Yan J W 2011 J. Hydrogen Energy 36 1862
|
[26] |
Vasylechko L, Pivak Y, Senyshyn A, Savytskii D, Berkowski M, Borrmann H, Knapp M, and Paulmann C 2005 J. Solid State Chem. 178 270
|
[27] |
Senyshyn A, Schnelle W, Vasylechko L, Ehrenberg H and Berkowski M 2007 J. Phys.:Condens. Matter 19 156214
|
[28] |
Parveen A, Srivastava A and Gaur N K 2011 Am. Inst. Phys. 1393 291
|
[29] |
Mathews M, Houwman E P, Boschker H, Rijnders G and Blank D H A 2010 J. Appl. Phys. 107 013904
|
[30] |
Reshak A H, Piasecki M, Auluck S, Kityk I V, Khenata R, Andriyevsky B, Cobet C, Esser N, Majchrowski A, Świrkowicz M, Diduszko R and Szyrski W 2009 J. Phys. Chem. B 113 15237
|
[31] |
Piasecki M, Andriyevsky B, Cobet C, Esser N, Kityk I V, Świrkowicz M and Majchrowski A 2010 Opt. Commun. 283 3998
|
[32] |
Senyshyn A, Ehrenberg H, Vasylechko L, Gale J D and Bismayer U 2005 J. Phys.:Condens. Matter 17 6217
|
[33] |
T Tohei, Moriwake H, Murata H, Kuwabara A, Hashimoto R, Yamamoto T and Tanaka I 2009 Phys. Rev. B 79 144125
|
[34] |
Novak P, Knizek K, Marysko M, Jirak Z and Kune J 2013 Phys. Rev. B 87 205139
|
[35] |
Hasni W, Boukortt A, Bekkouche B, Kacimi S, Djermouni M and Zaoui A 2012 Physica B 407 901
|
[36] |
Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 Wien2K, An Augmented Plane Wave Plus Local Orbitals Program For Calculating Crystal Properties, Vienna University of Technology, Vienna
|
[37] |
Sjöstedt E, Nordstrom L and Singh D J 2000 Solid State Commun. 114 15
|
[38] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
[39] |
Anisimov V I and Gunnarsson O 1991 Phys. Rev. B 43 7570
|
[40] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 5390
|
[41] |
Anismov V I and Gunnarsson O 1991 Phys. Rev. B 43 7570
|
[42] |
Madsen G K H and Nova'k P 2005 Eur. Phys. Lett. 69 777
|
[43] |
Howard C J and Kennedy B J 1999 J. Phys:Condens. Matter 11 3229
|
[44] |
Kajitani M, Matsuda M, Hoshikawa A, Oikawa K I, Torii S, Kamiyama T, Izumi F and Miyake M 2003 Chem. Mater. 15 3468
|
[45] |
Senyshyn A, Engel J M, Oswald I D H, Vasylechko L, Berkowski M 2009 Z. Kristallogr. Suppl. 30 341
|
[46] |
Parveen A, Srivastava A and Gaur N K 2011 Solid State Phys. 1349 975
|
[47] |
Vasylechko L, Matkovski A, Suchocki A, Savytskii D and Syvorotka I 1999 J. Alloys Compd. 286 213
|
[48] |
Ubic R and Subodh G 2009 J. Alloys Compd. 488 374
|
[49] |
Stan M, Armstrong T J, Butt D P, Wallace T C S, Park Y S, Haertling C L, Hartmann T and Hanrahan R J J 2002 J. Am. Ceram. Soc. 85 2811
|
[50] |
Vasylechko L O, Niewa R, Senyshyn A T, Pivak Y, Savytskii D, Knapp M and Bähtz C 2002 Hasylab. Ann. Rep. 1 223
|
[51] |
Sasaura M, Mukaida M and Miyazawa S 1990 Appl. Phys. Lett. 57 2728
|
[52] |
Vasylechko L, Akselrud L, Morgenroth W, Bismayer U, Matkovskii A and Savytskii D 2000 J. Alloys Compd. 297 46
|
[53] |
Piasecki M, Andriyevsky B, Cobet C, Esser N, Kityk I V, Świrkowicz M and Majchrowski A 2010 Opt. Commun. 283 3998
|
[54] |
Senyshyn A, Vasylechko L, Knapp M, Bismayer U, Berkowski M and Matkovskii A 2004 J. Alloys Compd. 382 84
|
[55] |
Senyshyn A, Ehrenberg H, Vasylechko L, Gale J D and Bismayer U 2005 J. Phys.:Condens. Matter 17 6217
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|