Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 067101    DOI: 10.1088/1674-1056/25/6/067101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Band-gap engineering of La1-xNdxAlO3 (x = 0, 0.25, 0.50, 0.75, 1) perovskite using density functional theory: A modified Becke Johnson potential study

Sandeep1, D P Rai2, A Shankar3, M P Ghimire4, Anup Pradhan Sakhya5, T P Sinha5, R Khenata6, S Bin Omran7, R K Thapa1
1 Department of Physics, Mizoram University, Aizawl-796004, India;
2 Department of Physics, Pachhunga University College, Aizawl-796001, India;
3 Department of Physics, University of North Bengal, Darjeeling-734013, India;
4 IFW Dresden e. V., P. O. Box 270116, D-01171 Dresden, Germany;
5 Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India;
6 Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Department de Technologie, Université de Mascara, 29000 Mascara, Algerie, Algeria;
7 Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
Abstract  

The structural, electronic, and magnetic properties of the Nd-doped Rare earth aluminate, La1-xNdxAlO3 (x = 0% to 100%) alloys are studied using the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory. The effects of the Nd substitution in LaAlO3 are studied using the supercell calculations. The computed electronic structure with the modified Becke-Johnson (mBJ) potential based approximation indicates that the La1-xNdxAlO3 alloys may possess half-metallic (HM) behaviors when doped with Nd of a finite density of states at the Fermi level (EF). The direct and indirect band gaps are studied each as a function of x which is the concentration of Nd-doped LaAlO3. The calculated magnetic moments in the La1-xNdxAlO3 alloys are found to arise mainly from the Nd-4f state. A probable half-metallic nature is suggested for each of these systems with supportive integral magnetic moments and highly spin-polarized electronic structures in these doped systems at EF. The observed decrease of the band gap with the increase in the concentration of Nd doping in LaAlO3 is a suitable technique for harnessing useful spintronic and magnetic devices.

Keywords:  density functional theory      rare earth aluminates      perovskites      electronic structures  
Received:  24 May 2015      Revised:  09 February 2016      Accepted manuscript online: 
PACS:  71.15.-m (Methods of electronic structure calculations)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Eh (Rare earth metals and alloys)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Fund: 

Project supported by the DST-SERB, Dy (Grant No. SERB/3586/2013-14), the UGCBSR, FRPS (Grant No. F.30-52/2014), the UGC (New Delhi, India) Inspire Fellowship DST (India), and the Deanship of Scientific Research at King Saud University (Grant No. RPG-VPP-088). M P Ghimire thanks the Alexander von Humboldt Foundation, Germany for the financial support.

Corresponding Authors:  Sandeep     E-mail:  sndp.chettri@gmail.com

Cite this article: 

Sandeep, D P Rai, A Shankar, M P Ghimire, Anup Pradhan Sakhya, T P Sinha, R Khenata, S Bin Omran, R K Thapa Band-gap engineering of La1-xNdxAlO3 (x = 0, 0.25, 0.50, 0.75, 1) perovskite using density functional theory: A modified Becke Johnson potential study 2016 Chin. Phys. B 25 067101

[1] Sales B C, Gschneidner K A Jr, Bunzli J C G, Pecharsky V K, Vasylechko L, Senyshyn A and Bismayer U 2003 Handbook on the Physics and Chemistry of Rare Earths (Amsterdam: Elsevier) Chap. 242
[2] Islam M S 2002 Solid State Ionics 154-155 75
[3] Sangram K D and Binod K R 2015 Chin. Phys. B 24 067702
[4] Liu Y K, Yin Y W and Li X G 2013 Chin. Phys. B 22 087502
[5] Koren G, Gupta E, Giess A, Segmüller A and Laibowitz R B 1989 Appl. Phys. Lett. 54 1054
[6] Zhang S B, Sun Y P, Zhao B C, Ang R, Zhu X B and Song W H 2009 J. Alloys Compd. 479 22
[7] Henke M, Perßon J and Kück S 2000 J. Lumin. 87-89 1049
[8] Bahoura M, Morris K J and Noginov M A 2002 Opt. Commun. 201 405
[9] Maletic S, Maletic D, Petronijevic I, Dojcilovic J and Popovic D M 2014 Chin. Phys. B 23 026102
[10] Cho S Y, Kim I T and Hong K S 1999 J. Mater. Res. 14 114
[11] Huang C and Chen Y C 2002 Mater. Res. Bull. 37 563
[12] Yang P, Shi M, Qin S and Deng H 2007 Mater. Lett. 61 2687
[13] Liu X and Lin J 2009 Solid State Sci. 11 2030
[14] Lybye D, Poulsen F W and Mogensen M 2009 Solid State Ionics 128 91
[15] Yamasaka D, Tamagawa K and Ohki Y 2011 J. Appl. Phys. 110 074103
[16] Ge J J, Yang M, Xue X B, You B, Sun L, Zhang W, Wu X S, Hu A and Du J 2012 Phys. Status Solidi C 9 97
[17] Kuang X Y and Zhou K W 2000 J. Phys. Chem. Solids 61 1225
[18] Wu G, Deng H, Wang W, Zhang K, Cao H, Yang P and Chu J 2014 J. Mater. Sci.: Mater. Electron. 25 3137
[19] Liu H S, Fang X Y, Song W L, Hou Z L, Lu R, Yuan J and Cao M S 2009 Chin. Phys. Lett. 26 067101
[20] Cheng F, Liu T Yu, Zhang Q R, Qiao H L and Zhou X W 2011 Chin. Phys. Lett. 28 036106
[21] Lei S L, Li B, Huang J, Li Q X and Yang J L 2013 Chin. Phys. Lett. 30 077502
[22] Hou Q Y, Li J J, Ying C, Zhao C W, Zhao E J and Zhang Y 2013 Chin. Phys. B 22 077103
[23] Wang Q, Liang J F, Zhang R H, Li Q and Dai J F 2013 Chin. Phys. B 22 057801
[24] Li S B, Yu H P, Zhang T1, Chen Z and Wu Z M 2014 Chin. Phys. B 23 107101
[25] Zylberberg J and Zuo-Guang Y 2006 J. Appl. Phys. 100 086102
[26] Murtaza G and Ahmad I 2012 J. Appl. Phys. 111 123116
[27] Namjoo S, Rozatian A S H, Jabbari I and Puschnig P 2015 Phys. Rev. B 91 205205
[28] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[29] Schwarz K and Blaha P 2003 Comput. Mater. Sci. 28 259
[30] Sandeep, Ghimire M P and Thapa R K 2011 J. Magn. Magn. Mater. 323 2883
[31] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties Karlheinz Schwarz, Techn. Universitat Wien, Austria ISBN 3-9501031-1-2
[32] Wong K M, Alay-e-Abbas S M, Fang Y, Shaukat A and Lei Y 2013 J. Appl. Phys. 114 034901
[33] Sandeep, Rai D P, Shankar A, Ghimire M P, Khenata R and Thapa R K 2015 Phys. Scr. 90 065803
[34] Al-Sawai W, Lin H, Markiewicz R S, Wray L A, Xia Y, Xu S Y, Hasan M Z and Bansil 2010 Phys. Rev. B 82 1
[35] Guo S D and Liu B G 2010 Europhys. Lett. 93 47006
[36] Meinert M 2013 Phys. Rev. B 87 1
[37] Yousaf M, Saeed M A, Ahmed R, Alsardia M M, Isa A R M and Shaari A 2012 Commun. Theor. Phys. 58 777
[38] Araujo R B, De Almeida J S and Ferreira Da Silva A 2013 J. Appl. Phys. 114 183702
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Sandeep, Rai D P, Shankar A, Ghimire M P, Khenata R and Thapa R K 2016 Mod. Phys. Lett. B 30 1650028
[41] Wong K M, Alay-e-Abbas S M, Shaukat A, Fang Y and Lei Y 2013 J. Appl. Phys. 113 014304
[42] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[43] Boudali A, Saadaoui F, Zemouli M, DrissKhodja M D and Amara K 2013 Adv. Mater. Phys. Chem. 3 146
[44] Bouvier P and Kreisel J 2002 J. Phys.: Condens. Matter 14 3981
[45] Luo X and Wang B 2008 J. Appl. Phys. 104 073518
[46] Ohtomo A and Hwang H Y 2004 Nature 427 423
[47] Lim S G, Kriventsov S, Jackson T N, Haeni J H, Schlom D G, Balbashov A M, Uecker R, Reiche P, Freeouf J L and Lucovsky G 2002 J. Appl. Phys. 91 4500
[48] Tang M J, Yang S Q, Liang T H, Yang Q X and Liu K 2013 J. At. Mol. Sci. 4 280
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!