Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 076102    DOI: 10.1088/1674-1056/27/7/076102
Special Issue: TOPICAL REVIEW — SECUF: Breakthroughs and opportunities for the research of physical science
TOPICAL REVIEW—SECUF: Breakthroughs and opportunities for the research of physical science Prev   Next  

Ultrafast electron diffraction

Xuan Wang(王瑄)1, Yutong Li(李玉同)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Collaborative Innovation Center of IFSA(CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Ultrafast electron diffraction (UED) technique has proven to be an innovative tool for providing new insights in lattice dynamics with unprecedented temporal and spatial sensitivities. In this article, we give a brief introduction of this technique using the proposed UED station in the Synergetic Extreme Condition User Facility (SECUF) as a prototype. We briefly discussed UED's functionality, working principle, design consideration, and main components. We also briefly reviewed several pioneer works with UED to study structure-function correlations in several research areas. With these efforts, we endeavor to raise the awareness of this tool among those researchers, who may not yet have realized the emerging opportunities offered by this technique.
Keywords:  ultrafast phenomena      lattice dynamics      ultrafast electron diffraction  
Received:  21 March 2018      Revised:  19 May 2018      Accepted manuscript online: 
PACS:  63.20.kd (Phonon-electron interactions)  
  63.20.Ry (Anharmonic lattice modes)  
  63.90.+t (Other topics in lattice dynamics)  
  61.05.J- (Electron diffraction and scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774409), the National Basic Research Program of China (Grant No. 2013CBA01501), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB16010200 and XDB07030300).
Corresponding Authors:  Xuan Wang, Yutong Li     E-mail:;

Cite this article: 

Xuan Wang(王瑄), Yutong Li(李玉同) Ultrafast electron diffraction 2018 Chin. Phys. B 27 076102

[1] Kabius B C, Browning N D, Thevuthasan S, Diehl B L and Stach E A 2012 Dynamic processes in biology chemistry and materials science:Opportunities for ultrafast transmission electron microscopy-workshop summary report Technical report Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
[2] Williams D B 2009 Transmission Electron Microscopy——a Textbook for Materials Science
[3] Thomas J M and Midgley P A 2011 Chem. Phys. 385 1
[4] King W E, Armstrong M, Campbell G, Frank A, Reed B and Stuart B 2005 J. Appl. Phys. 97 8
[5] Sciaini G and Miller R J D 2011 Rep. Prog. Phys. 74 96101
[6] Henderson R 1995 Q. Rev. Biophys. 28 171
[7] Park H and Zuo J M 2009 Appl. Phys. Lett. 94 587
[8] Raman R K, Tao Z S, Han T R and Ruan C Y 2009 Appl. Phys. Lett. 95 024912
[9] Schfer S, Liang W and Zewail A H 2010 Chem. Phys. Lett. 493 11
[10] Qian B L and Elsayedali H E 2002 J. Appl. Phys. 91 462
[11] Li M C, Wang X, Liao G Q, Li Y T and Zhang J 2017 Chin. Phys. B 26 054103
[12] Reed B W 2006 J. Appl. Phys. 100 44
[13] Siwick B J, Dwyer J R, Jordan R E and Miller R J D 2002 J. Appl. Phys. 92 1643
[14] Michalik A M, Ya E and Sipe J E 2008 J. Appl. Phys. 104 054905
[15] Srinivasan R, Lobastov V A, Ruan C Y and Zewail A H 2003 Cheminform 34 1761
[16] Cao J, Hao Z, Park H and Tao C 2003 Appl. Phys. Lett. 83 1044
[17] Siwick B J, Dwyer J R, Jordan R E and Miller R J 2003 Science 302 1382
[18] Waldecker L, Bertoni R and Ernstorfer R 2015 J. Appl. Phys. 117 1382
[19] Badali D S, Gengler R Y N and Miller R J D 2016 Structural Dyn. 3 034302
[20] Yurtsever A and Zewail A H 2009 Science 326 708
[21] Zewail A H and Thomas J M 2009 4$D Electron Microscopy:Imaging in Space and Time (Imperial College Press)
[22] Cao G L, Sun S S, Li Z W, Tian H F, Yang H X and Li J Q 2014 Sci. Rep. 5 8404
[23] Eichberger M, Erasmus N, Haupt K, Kassier G, Von Flotow A, Demsar J and Schwoerer H 2013 Appl. Phys. Lett. 102 1382
[24] Li R, Tang C, Du Y, Huang W, Du Q, Shi J, Yan L and Wang X 2009 Rev. Sci. Instrum. 80 083303
[25] Hastings J, Rudakov F, Dowell D, Schmerge J, Gierman S and Weber P 2006 Appl. Phys. Lett. 89 161
[26] Zhu P, Berger H, Cao J, Geck J, Hidaka Y, Kraus R, Pjerov S, Shen Y, Tobey R I and Zhu Y 2016 New J. Phys. 17 063004
[27] Zhu P F, Fu F C, Liu S G, Xiang D, Zhang J and Cao J M 2014 Chin. Phys. Lett. 31 116101
[28] Musumeci P, Moody J T, Scoby C M, Gutierrez M S and Westfall M 2010 Appl. Phys. Lett. 97 65
[29] Murooka Y, Naruse N, Sakakihara S, Ishimaru M, Yang J and Tanimura K 2011 Appl. Phys. Lett. 98 285
[30] Weathersby S P, Brown G, Centurion M, Chase T F, Coffee R, Corbett J, Eichner J P, Frisch J C, Fry A R and Ghr M 2015 Rev. Sci. Instrum. 86 28
[31] Yang J, Koichi K, Kondoh T, Yoshida Y, Tanimura K and Urakawa J 2014 Nucl. Inst. & Methods Phys. Res. A 637 S24
[32] van Oudheusden T, Pasmans P L E M, van der Geer S B, de Loos M J, van der Wiel M J and Luiten O J 2010 Phys. Rev. Lett. 105 264801
[33] Chatelain R P, Morrison V R, Godbout C and Siwick B J 2012 Appl. Phys. Lett. 101 73
[34] Qi Y P, Pei M J, Qi D L, Li J, Yang Y, Jia T, Zhang S and Sun Z R 2017 New J. Phys. 19 023015
[35] Baum P 2014 J. Phys. B At. Mol. & Opt. Phys. 47 124005
[36] Altucci C, Velotta R and Marangos J P 2010 J. Mod. Opt. 57 916
[37] Morimoto Y and Baum P 2017 Nature Physics 14 252
[38] Zhang P, Yang J and Centurion M 2014 New J. Phys. 16 083008
[39] Baum P and Zewail A H 2006 Proc. Natl. Academy Sci. United States Am. 103 16105
[40] van Mourik M W, Engelen W J, Vredenbregt E J D and Luiten O J 2014 Structural Dyn. 1 034302
[41] Hoffrogge J, Paul Stein J, Kruger M, Forster M, Hammer J, Ehberger D, Baum P and Hommelhoff P 2014 J. Appl. Phys. 115 65
[42] Ihee H, Lobastov V A, Gomez U M, Goodson B M, Srinivasan R, Ruan C Y and Zewail A H 2001 Science 291 458
[43] Reckenthaeler P, Centurion M, Fuss W, Trushin S A, Krausz F and Fill E E 2009 Phys. Rev. Lett. 102 213001
[44] Srinivasan R, Feenstra J S, Park S T, Xu S and Zewail A H 2005 Science 307 558
[45] Centurion M 2016 J. Phys. B 49 062002
[46] Park H, Wang X, Nie S, Clinite R and Cao J 2005 Phys. Rev. B 72 301
[47] Wang X, Nie S, Li J, Clinite R, Clark J E and Cao J 2010 Magn. Phys. Rev. B 81 220301
[48] Nie S, Wang X, Park H, Clinite R and Cao J 2006 Phys. Rev. Lett. 96 025901
[49] Harb M, Ernstorfer R, Dartigalongue T, Hebeisen C T, Jordan R E and Miller R J D 2006 J. Phys. Chem. B 110 25308
[50] Yang D S, Gedik N and Zewail A H 2007 J. Phys. Chem. C 111 4889
[51] Wang X, Rahmani H, Zhou J, Gorfien M, Plaskus J M, Li D, Voss R, Nelson C A, Lei K W and Wolcott A 2016 Appl. Phys. Lett. 109 773
[52] Schfer S, Liang W and Zewail A H 2011 New J. Phys. 13 063030
[53] Schfer S, Liang W and Zewail A H 2011 Chem. Phys. Lett. 515 278
[54] Chatelain R P, Morrison V R, Klarenaar B L and Siwick B J 2014 Phys. Rev. Lett. 113 235502
[55] Harb M, Peng W, Sciaini G, Hebeisen C T, Ernstorfer R, Eriksson M A, Lagally M G, Kruglik S G and Miller R J D 2009 Phys. Rev. B 79 4301
[56] Park H, Nie S, Wang X, Clinite R and Cao J 2005 J. Phys. Chem. B 109 13854
[57] Chase T, Trigo M, Reid A H, Li R, Vecchione T, Shen X, Weathersby S, Coffee R, Hartmann N and Reis D A 2016 Appl. Phys. Lett. 108 1175
[58] Waldecker L, Bertoni R, Vorberger J and Ernstorfer R 2015 Phys. Rev. X 6 021003
[59] Waldecker L, Bertoni R, Hbener H, Brumme T, Vasileiadis T, Zahn D, Rubio A and Ernstorfer R 2017 Phys. Rev. Lett. 119 036803
[60] Williamson S, Mourou G and Li J C M 1984 Phys. Rev. Lett. 52 2364
[61] Ernstorfer R, Harb M, Hebeisen C T, Sciaini G, Dartigalongue T and Miller R J D 2009 Science 323 1033
[62] Harb M, Ernstorfer R, Hebeisen C T, Sciaini G, Peng W, Dartigalongue T, Eriksson M A, Lagally M G, Kruglik S G and Miller R J D 2008 Phys. Rev. Lett. 100 155504
[63] Sciaini G, Harb M, Kruglik S G, Payer T, Hebeisen C T, Heringdorf Fj Zu, Yamaguchi M, Hornvon M, Ernstorfer R and Miller R J D 2009 Nature 458 56
[64] Koenig M, Benuzzimounaix A, Ravasio A, Vinci T, Ozaki N, Lepape S, Batani D, Huser G, Hall T and Hicks D 2005 Plasma Phys. & Control. Fusion 47 481
[65] MoMZ, Shen X, Chen Z, Li R K, Dunning M, Sokolowskitinten K, Zheng Q, Weathersby S P, Reid A H and Coffee R 2016 Rev. Sci. Instrum. 87 11D810
[66] Li J, Zhou J, Ogitsu T, Ping Y, Ware D and Cao J 2012 High Energy Density Phys. 8 298
[67] Li J, Wang X, Zhou H, Zhou J, Cheng J G and Cao J 2016 Appl. Phys. Lett. 109 337
[68] Morrison V R, Chatelain R P, Tiwari K L, Hendaoui A, Bruhcs A, Chaker M and Siwick B J 2014 Science 346 445
[69] Tao Z, Zhou F, Han T R T, Torres D, Wang T, Sepulveda N, Chang K, Young M, Lunt R R and Ruan C Y 2016 Nat. Sci. Rep. 6 38514
[70] Sun S, Wei L, Li Z, Cao G, Liu Y, Lu W J, Sun Y P, Tian H, Yang H and Li J 2015 Phys. Rev. B 92 224303
[71] Wei L, Sun S, Cong G, Li Z, Kai S, Yu L, Lu W, Sun Y, Tian H and Yang H 2017 Structural Dynamics 4 044012
[72] Han T R T, Zhou F, Malliakas C D, Duxbury P M, Mahanti S D, Kanatzidis M G and Ruan C Y 2015 Sci. Adv. 1 e1400173
[73] Le G L, Chase T, Reid A H, Li R K, Svetin D, Shen X, Vecchione T, Wang X J, Mihailovic D and Drr H A 2017 Structural Dynamics 4 044020
[74] Erasmus N, Eichberger M, Haupt K, Boshoff I, Kassier G, Birmurske R, Berger H, Demsar J and Schwoerer H 2012 Phys. Rev. Lett. 109 3076
[75] ElsayedAli H E and Herman J W 1990 Rev. Sci. Instrum. 61 1636
[76] Vogelgesang S, Storeck G, Horstmann J G, Diekmann T, Sivis M, Schramm S, Rossnagel K, Schfer S and Ropers C 2017 Nature Physics 14 184
[77] Gulde M, Schweda S, Storeck G, Maiti M, Yu H K, Wodtke A M, Schfer S and Ropers C 2014 Science 345 200
[78] Hassan M T 2018 J. Phys. B 51 032005
[79] Raman R K, Murooka Y, Ruan C Y, Yang T, Berber S and Tomnek D 2008 Phys. Rev. Lett. 101 077401
[80] Krenzer B, Hanisch-Blicharski A, Schneider P, Payer T, M? Llenbeck S, Osmani O, Kammler M, Meyer R and Hoegen H V 2009 Phys. Rev. B 80 1132
[81] Ruan C Y, Lobastov V A, Vigliotti F, Chen S and Zewail A H 2004 Science 304 80
[82] Gedik N, Yang D S, Logvenov G, Bozovic I and Zewail A H 2007 Science 316 425
[83] Long C, Li R, Chen J, Zhu P, Liu F, Cao J, Sheng Z and Zhang J 2015 Proc. Natl. Academy Sci. United States Am. 112 14479
[84] Frigge T, Hafke B, Tinnemann V, Witte T and Hoegen H V 2015 Structural Dynamics 2 035101
[85] Frigge T, Hafke B, Witte T, Krenzer B, Streubhr C, Syed A S, Trontl V M, Avigo I, Zhou P and Ligges M 2017 Nature 544 207
[1] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[2] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[3] Design of an ultrafast electron diffractometer with multiple operation modes
Chun-Long Hu(胡春龙), Zhong Wang(王众), Yi-Jie Shi(石义杰), Chang Ye(叶昶), and Wen-Xi Liang(梁文锡). Chin. Phys. B, 2021, 30(9): 090701.
[4] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[5] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
[6] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[7] Imprint of transient electron localization in H2+ using circularly-polarized laser pulse
Jianghua Luo(罗江华), Jun Li(李军), and Huafeng Zhang(张华峰). Chin. Phys. B, 2020, 29(12): 123201.
[8] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
[9] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[10] Optically induced abnormal terahertz absorption in black silicon
Dong-Wei Zhai(翟东为), Hai-Ling Liu(刘海玲), Xxx Sedao, Yu-Ping Yang(杨玉平). Chin. Phys. B, 2018, 27(2): 027802.
[11] Improved method for studying the propagation dynamics of ultrafast electron pulses based on mean-field models
Meng-Chao Li(李梦超), Xuan Wang(王瑄), Guo-Qian Liao(廖国前), Yu-Tong Li(李玉同), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 054103.
[12] Compressing ultrafast electron pulse by radio frequency cavity
Min-Jie Pei(裴敏洁), Da-Long Qi(齐大龙), Ying-Peng Qi(齐迎朋), Tian-Qing Jia(贾天卿), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2017, 26(4): 044102.
[13] Site preferences and lattice vibrations of Nd6Fe13-xTxSi(T = Co, Ni)
Huang Tian-Shun (黄天顺), Cheng Hai-Xia (成海霞), Wang Xiao-Xu (王晓旭), Zhang Zhen-Feng (张振峰), An Zhi-Wei (安志伟), Zhang Guo-Hua (张国华). Chin. Phys. B, 2015, 24(10): 103402.
[14] Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma
Li Jing (李静), Pei Min-Jie (裴敏洁), Qi Da-Long (齐大龙), Qi Ying-Peng (齐迎朋), Yang Yan (杨岩), Sun Zhen-Rong (孙真荣). Chin. Phys. B, 2014, 23(12): 124209.
[15] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
No Suggested Reading articles found!