Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054103    DOI: 10.1088/1674-1056/26/5/054103

Improved method for studying the propagation dynamics of ultrafast electron pulses based on mean-field models

Meng-Chao Li(李梦超)1,2, Xuan Wang(王瑄)1, Guo-Qian Liao(廖国前)1, Yu-Tong Li(李玉同)1,2,3, Jie Zhang(张杰)3,4
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Collaborative Innovation Centre of Inertial Fusion Science and Applications, Shanghai Jiao Tong University, Shanghai 200240, China;
4 Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China

We have studied the propagation dynamics of ultrafast electron pulses by using an improved mean-field model, in which the propagation of the electron pulses across the boundary of the acceleration region is explicitly considered. A large decrease in the speed spread of the electron pulses (we called “boundary kick”) is observed and properly treated leading to a significant improvement in the simulation accuracy, particularly when the density of electrons is very large. We show that our method is consistent with the simulation by the N-particle method, while others can introduce factorial error.

Keywords:  ultrafast electron diffraction      space-charge      mean-field      charge particle propagation  
Received:  18 December 2016      Revised:  22 February 2017      Accepted manuscript online: 
PACS:  41.85.Ja (Particle beam transport)  
  61.05.jd (Theories of electron diffraction and scattering)  
  29.27.Bd (Beam dynamics; collective effects and instabilities)  
  06.60.Jn (High-speed techniques)  

Project supported by the National Basic Research Program of China (Grant No. 2013CBA01501) and the Science Challenge Program and the Strategic Pilot Project of the Chinese Academy of Sciences.

Corresponding Authors:  Xuan Wang, Yu-Tong Li     E-mail:;

Cite this article: 

Meng-Chao Li(李梦超), Xuan Wang(王瑄), Guo-Qian Liao(廖国前), Yu-Tong Li(李玉同), Jie Zhang(张杰) Improved method for studying the propagation dynamics of ultrafast electron pulses based on mean-field models 2017 Chin. Phys. B 26 054103

[1] Mourou G and Williamson S 1982 Appl. Phys. Lett. 41 44
[2] Cao J, Hao Z, Park H, Tao C, Kau D and Blaszczyk L 2003 Appl. Phys. Lett. 83 1044
[3] Siwick B J, Dwyer J R, Jordan R E and Miller R J 2003 Science 302 1382
[4] Ihee H, Lobastov V A, Gomez U M, Goodson B M, Srinivasan R, Ruan C Y and Zewail A H 2001 Science 291 458
[5] Ruan C Y, Vigliotti F, Lobastov V A, Chen S and Zewail A H 2004 Proc. Natl. Acad. Sci. 101 1123
[6] Centurion M, Reckenthaeler P, Trushin S A, Krausz F and Fill E E 2008 Nat. Photon. 2 315
[7] King W E, Campbell G H, Frank A and Reed B 2005 J. Appl. Phys. 97 111101
[8] Liang W X, Zhu P F, Wang X, Nie S H, Zhang Z C, Cao J M, Sheng Z M and Zhang J 2009 Acta. Phys. Sin. 58 5546 (in Chinese)
[9] Reiser M 2008 Theory and Design of Charged Particle Beams (2nd edn) (New York: Wiley)
[10] van der Geer S B, de Loos M J, Oudheusden T V, op.'t. Root W P E M, van. der. Wiel M J and Luiten O J 2006 Phys. Rev. Spec. Top-AC 9 192
[11] Qian B L and Elsayed-Ali H E 2002 J. Appl. Phys. 91 462
[12] Siwick B J, Dwyer J R, Jordan R E and Miller R J D 2002 J. Appl. Phys. 92 1643
[13] Qian B L and Elsayed-Ali H E 2003 J. Appl. Phys. 94 803
[14] Collin S, Merano M, Gatri M, Sonderegger S, Renucci P, Ganiére J D and Deveaud B 2005 J. Appl. Phys. 98 094910
[15] Reed B W 2006 J. Appl. Phys. 100 034916
[16] Michalik A M and Sipe J E 2006 J. Appl. Phys. 99 054908
[17] Wang X, Nie S, Park H, Li J, Clinite R, Li R, Wang X and Cao J 2009 Rev. Sci. Instrum. 80 013902
[18] Gahlmann A, Tae P S and Zewail A H 2008 Phys. Chem. Chem. Phys. 10 2894
[19] Oudheusden T V 2010 Electron Source for sub-relativistic Single-shot Femtosecond Diffraction (Ph. D. Thesis) (Netherlands Eindhoven: Eindhoven University of Technology)
[20] Van O T, Pasmans P L, Sb V D G, de Loos M J, Mj V D W and Luiten O J 2010 Phys. Rev. Lett. 105 172
[21] Pei M J, Qi D L, Qi Y P, Jia T Q, Zhang S A and Sun Z R 2015 Acta Phys. Sin. 64 165 (in Chinese)
[22] Misner C W, Thorne K S, Wheeler J A, Misner C W, Thorne K S and Wheeler J A 1997 Gravitation (Taiwan, China: CKS Bookstore) pp. 163-176
[23] Passlack S, Mathias S, Andreyev O, Mittnacht D, Aeschlimann M and Bauer M 2006 J. Appl. Phys. 100 024912
[1] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[2] Design of an ultrafast electron diffractometer with multiple operation modes
Chun-Long Hu(胡春龙), Zhong Wang(王众), Yi-Jie Shi(石义杰), Chang Ye(叶昶), and Wen-Xi Liang(梁文锡). Chin. Phys. B, 2021, 30(9): 090701.
[3] Effects of electron correlation on superconductivity in the Hatsugai-Kohmoto model
Huai-Shuang Zhu(祝怀霜) and Qiang Han(韩强). Chin. Phys. B, 2021, 30(10): 107401.
[4] Existence of spontaneous symmetry breaking in two-lane totally asymmetric simple exclusion processes with an intersection
Bo Tian(田波), Ping Xia(夏萍), Li Liu(刘莉), Meng-Ran Wu(吴蒙然), Shu-Yong Guo(郭树勇). Chin. Phys. B, 2020, 29(5): 050505.
[5] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[6] Effect of transient space-charge perturbation on carrier transport in high-resistance CdZnTe semiconductor
Yu Guo(郭玉), Gang-Qiang Zha(查钢强), Ying-Rui Li(李颖锐), Ting-Ting Tan(谭婷婷), Hao Zhu(朱昊), Sen Wu(吴森). Chin. Phys. B, 2019, 28(11): 117201.
[7] Ultrafast electron diffraction
Xuan Wang(王瑄), Yutong Li(李玉同). Chin. Phys. B, 2018, 27(7): 076102.
[8] Dyson-Maleev theory of an X X Z ferrimagnetic spin chain with single-ion anisotropy
Yu-Ge Chen(陈宇戈), Yin-Xiang Li(李殷翔), Li-Jun Tian(田立君), Bin Chen(陈斌). Chin. Phys. B, 2018, 27(12): 127501.
[9] Compressing ultrafast electron pulse by radio frequency cavity
Min-Jie Pei(裴敏洁), Da-Long Qi(齐大龙), Ying-Peng Qi(齐迎朋), Tian-Qing Jia(贾天卿), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2017, 26(4): 044102.
[10] Thermophysical properties of iridium at finite temperature
Priyank Kumar, N K Bhatt, P R Vyas, V B Gohel. Chin. Phys. B, 2016, 25(11): 116401.
[11] Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理). Chin. Phys. B, 2016, 25(11): 117101.
[12] Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma
Li Jing (李静), Pei Min-Jie (裴敏洁), Qi Da-Long (齐大龙), Qi Ying-Peng (齐迎朋), Yang Yan (杨岩), Sun Zhen-Rong (孙真荣). Chin. Phys. B, 2014, 23(12): 124209.
[13] Totally asymmetric exclusion processes at constrained m-input n-output junction points
Li Shao-Da (李少达), Liu Ming-Zhe (刘明哲), Pei Xiang-Jun (裴向军). Chin. Phys. B, 2013, 22(6): 060512.
[14] Temperature-dependent rectifying and photovoltaic characteristics of an oxygen-deficient Bi2Sr2Co2Oy/Si heterojunction
Yan Guo-Ying (闫国英), Bai Zi-Long (白子龙), Li Hui-Ling (李慧玲), Fu Guang-Sheng (傅广生), Liu Fu-Qiang (刘富强), Yu Wei (于威), Wang Jiang-Long (王江龙), Wang Shu-Fang (王淑芳). Chin. Phys. B, 2013, 22(10): 107301.
[15] Asymmetric simple exclusion processes with complex lattice geometries: A review of models and phenomena
Liu Ming-Zhe (刘明哲), Li Shao-Da (李少达), Wang Rui-Li. Chin. Phys. B, 2012, 21(9): 090510.
No Suggested Reading articles found!