CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study |
Mingyue Zhang(张明月)1, Chunyan Wang(王春艳)1,2, Yinuo Zhang(张一诺)1, Qilong Gao(高其龙)1,†, and Yu Jia(贾瑜)2,1,‡ |
1 International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; 2 Key Laboratory of Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Henan 475001, China |
|
|
Abstract Thermal expansion control is always an obstructive factor and challenging in high precision engineering field. Here, the negative thermal expansion of NbF3 and NbOF2 was predicted by first-principles calculation with density functional theory and the quasi-harmonic approximation (QHA). We studied the total charge density, thermal vibration, and lattice dynamic to investigate the thermal expansion mechanism. We found that the presence of O induced the relatively strong covalent bond in NbOF2, thus weakening the transverse vibration of F and O in NbOF2, compared with the case of NbF3. In this study, we proposed a way to tailor negative thermal expansion of metal fluorides by introducing the oxygen atoms. The present work not only predicts two NTE compounds, but also provides an insight on thermal expansion control by designing chemical bond type.
|
Received: 20 December 2020
Revised: 01 February 2021
Accepted manuscript online: 05 February 2021
|
PACS:
|
65.40.De
|
(Thermal expansion; thermomechanical effects)
|
|
61.66.-f
|
(Structure of specific crystalline solids)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
61.72.jd
|
(Vacancies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774078 and 21905252), China Postdoctoral Science Foundation (Grant No. 2019M652558), and Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (Grant No. 10094100510025). |
Corresponding Authors:
Qilong Gao, Yu Jia
E-mail: qilonggao@zzu.edu.cn;jiayu@henu.edu.cn
|
Cite this article:
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜) Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study 2021 Chin. Phys. B 30 056501
|
[1] Mary T A, Evans J S O, Vogt T and Sleight A 1996 Science 272 90 [2] Chang D, Niu C Y, Huang X, Sun Q, Cho J H and Jia Y 2017 Phys. Rev. B 95 104101 [3] Mittal R, Gupta M K and Chaplot S L 2018 Prog. Mater. Sci 92 360 [4] Chen J, Hu L, Deng J X and Xing X R 2015 Chem. Soc. Rev 44 3522 [5] Song Y Z, Chen J, Liu X Z, Wang C W, Zhang J, Liu H, Zhu H, Hu L, Lin K, Zhang S T and Xing X R 2018 J. Am. Chem. Soc 140 602 [6] Liu F S, Chen X P, Xie H X, Ao W Q and Li J Q 2010 Acta. Phys. Sin. 59 3350 (in Chinese) [7] Xu S, Hu Y, Liang Y, Shi C, Su Y, Guo J, Gao Q L, Chao M and Liang E J 2020 Chin. Phys. B 29 086501 [8] Sanson A 2014 Chem. Mater. 26 3716 [9] Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J and Liang E J 2016 Chin. Phys. Lett 33 046503 [10] Greve B K, Martin K L, Lee P L, Chupas P J, Chapman K W and Wilkinson A P 2010 J. Am. Chem. Soc. 132 15496 [11] Hancock J C, Chapman K W, Halder G J, Morelock C R, Kaplan B S, Gallington L C, Bongiorno A, Chu H, Si Z and Wilkinson A P J C 2015 Chem. Mater. 27 3912 [12] Hibble S J, Chippindale A M, Marelli E, Kroeker S, Michaelis V K, Greer B J, Aguiar P M, Bilbe E J, Barney E R and Hannon A C 2013 J. Am. Chem. Soc. 135 16478 [13] Gao Q L, Liang E J, Xing X R and Chen J 2020 Chem. J. Chin. U. 41 388 [14] Li M, Li Y, Wang C Y and Sun Q 2019 Chin. Phys. Lett. 36 066301 [15] Gao Q L, Sun Y, Shi N K, Milazzo R, Pollastri S, Olivi L, Huang Q Z, Liu H, Sanson A, Sun Q, Liang E J, Xing X R and Chen J 2020 Scripta. Mater. 187 119 [16] Heinen J, Ready A D, Bennett T D, Dubbeldam D, Friddle R W and Burtch N C 2018 ACS. Appl. Mater. Inter. 10 21079 [17] Schneider C, Bodesheim D, Ehrenreich M G, Crocellá V, Mink J, Fischer R A, Butler K T and Kieslich G 2019 J. Am. Chem. Soc. 141 10504 [18] Wang C, Chu L H, Yao Q R, Sun Y, Wu M M, Ding L, Jun Y, Na Y Y, Tang W H, Li G N, Huang Q Z and Lynn J W 2012 Phys. Rev. B 85 220103 [19] Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902 [20] Hester B R, Hancock J C, Lapidus S H and Wilkinson A P 2016 Chem. Mater. 27 [21] Han F, Hu L, Liu Z, Li Q, Wang T, Ren Y, Deng J X, Chen J and Xing X 2017 Inorg. Chem. Front. 4 343 [22] Hester B R and Wilkinson A P 2018 Inorg. Chem. 57 11275 [23] Morelock C R, Gallington L C and Wilkinson A P 2015 J. Solid. State. Chem. 222 96 [24] Morelock C R, Gallington L C and Wilkinson A P 2014 Chem. Mater. 26 1936 [25] Hu L, Chen J, Fan L L, Ren Y, Rong Y C, Pan Z, Deng J X, Yu R B and Xing X R 2014 J. Am. Chem. Soc. 136 13566 [26] Chen J, Gao Q L, Sanson A, Jiang X X, Huang Q Z, Carnera A, Rodriguez C G, Olivi L, Wang L, Hu L, Lin K, Ren Y, Lin Z S, Wang C, Gu L, Deng J X, Attfield J P and Xing X R 2017 Nat. Commun. 8 14441 [27] Yang C, Zhang Y G, Bai J M, Qu B Y, Tong P, Wang M, Lin J C, Zhang R R, Tong H Y, Wu Y, Song W H and Sun Y P 2018 J. Mater. Chem. C 6 5148 [28] Baxter S J, Hester B R, Wright B R and Wilkinson A P 2019 Chem. Mater. 31 3440 [29] Brink F J, Withers R L and Norén L 2002 J. Solid. State. Chem. 166 73 [30] Yang B, Wang J, Liu X and Zhao M 2018 Phys. Chem. Chem. Phys. 20 4781 [31] Cao W, Huang Q, Rong Y, Wang Y, Deng J, Chen J and Xing X 2016 Inorg. Chem. Front. 3 856 [32] Wang J P, Chen Q D, Li S L, Ji Y J, Mu W Y, Feng W W, Zeng G J, Liu Y W and Liang E J 2018 Chin. Phys. B 27 066501 [33] Li Y, Gao Q L, Chang D H, Sun P J, Liu J Z, Jia Y, Liang E J and Sun Q 2020 J. Phys. Condens. Mater. 32 455703 [34] Kresse G and Furthmuüller J 1996 Phys. Rev. B 54 11169 [35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [37] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [38] Wang L, Yuan P F, Wang F, Sun Q, Guo Z X, Liang E J and Jia Y 2014 Mater. Chem. Phys. 148 214 [39] Wang Z, Wang F, Wang L, Jia, Y and Sun Q 2013 J. Appl. Phys. 114 063508 [40] Chang D H, Liu Y M, Rao F F, Wang F, Sun Q and Jia Y 2016 Phys. Chem. Chem. Phys. 18 14503 [41] Wang C Y, Chang D H, Gao Q L, Liu C Y, Wang Q G, Huang X W and Jia Y 2020 Phys. Chem. Chem. Phys. 22 18655 [42] Ehrlich V P, Plöger F and Pietzka G 1955 Z. Anorg. Allg. Chem. 282 19 [43] Miller W, Mackenzie D S and Evans K E 2009 J. Mater. Sci. 44 5441 [44] Li C W, Tang X, Muñoz J A, Keith J B, Tracy S J, Abernathy D L and Fultz B 2011 Phys. Rev. Lett. 107 195504 [45] Gao Q L, Wang J Q, Sanson A, Sun Q, Liang E J, Xing X R and Chen J 2020 J. Am. Chem. Soc. 142 6935 [46] Gao Q L, Shi X W, Venier A, Carnera A, Huang Q Z, Wu H, Chen J, Sanson A and Liang E J 2020 Inorg. Chem. 59 14852 [47] Liu Y M, Wang Z H, Wu M Y, Sun Q, Chao M J and Jia Y 2015 Comp. Mater. Sci. 107 157 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|