Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056501    DOI: 10.1088/1674-1056/abe376
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study

Mingyue Zhang(张明月)1, Chunyan Wang(王春艳)1,2, Yinuo Zhang(张一诺)1, Qilong Gao(高其龙)1,†, and Yu Jia(贾瑜)2,1,‡
1 International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China;
2 Key Laboratory of Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Henan 475001, China
Abstract  Thermal expansion control is always an obstructive factor and challenging in high precision engineering field. Here, the negative thermal expansion of NbF3 and NbOF2 was predicted by first-principles calculation with density functional theory and the quasi-harmonic approximation (QHA). We studied the total charge density, thermal vibration, and lattice dynamic to investigate the thermal expansion mechanism. We found that the presence of O induced the relatively strong covalent bond in NbOF2, thus weakening the transverse vibration of F and O in NbOF2, compared with the case of NbF3. In this study, we proposed a way to tailor negative thermal expansion of metal fluorides by introducing the oxygen atoms. The present work not only predicts two NTE compounds, but also provides an insight on thermal expansion control by designing chemical bond type.
Keywords:  negative thermal expansion      fluorides      lattice dynamics calculation      average atomic volume      negative Grüneisen parameters  
Received:  20 December 2020      Revised:  01 February 2021      Accepted manuscript online:  05 February 2021
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  61.66.-f (Structure of specific crystalline solids)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  61.72.jd (Vacancies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774078 and 21905252), China Postdoctoral Science Foundation (Grant No. 2019M652558), and Innovation Scientists and Technicians Troop Construction Projects of Henan Province, China (Grant No. 10094100510025).
Corresponding Authors:  Qilong Gao, Yu Jia     E-mail:  qilonggao@zzu.edu.cn;jiayu@henu.edu.cn

Cite this article: 

Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜) Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study 2021 Chin. Phys. B 30 056501

[1] Mary T A, Evans J S O, Vogt T and Sleight A 1996 Science 272 90
[2] Chang D, Niu C Y, Huang X, Sun Q, Cho J H and Jia Y 2017 Phys. Rev. B 95 104101
[3] Mittal R, Gupta M K and Chaplot S L 2018 Prog. Mater. Sci 92 360
[4] Chen J, Hu L, Deng J X and Xing X R 2015 Chem. Soc. Rev 44 3522
[5] Song Y Z, Chen J, Liu X Z, Wang C W, Zhang J, Liu H, Zhu H, Hu L, Lin K, Zhang S T and Xing X R 2018 J. Am. Chem. Soc 140 602
[6] Liu F S, Chen X P, Xie H X, Ao W Q and Li J Q 2010 Acta. Phys. Sin. 59 3350 (in Chinese)
[7] Xu S, Hu Y, Liang Y, Shi C, Su Y, Guo J, Gao Q L, Chao M and Liang E J 2020 Chin. Phys. B 29 086501
[8] Sanson A 2014 Chem. Mater. 26 3716
[9] Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J and Liang E J 2016 Chin. Phys. Lett 33 046503
[10] Greve B K, Martin K L, Lee P L, Chupas P J, Chapman K W and Wilkinson A P 2010 J. Am. Chem. Soc. 132 15496
[11] Hancock J C, Chapman K W, Halder G J, Morelock C R, Kaplan B S, Gallington L C, Bongiorno A, Chu H, Si Z and Wilkinson A P J C 2015 Chem. Mater. 27 3912
[12] Hibble S J, Chippindale A M, Marelli E, Kroeker S, Michaelis V K, Greer B J, Aguiar P M, Bilbe E J, Barney E R and Hannon A C 2013 J. Am. Chem. Soc. 135 16478
[13] Gao Q L, Liang E J, Xing X R and Chen J 2020 Chem. J. Chin. U. 41 388
[14] Li M, Li Y, Wang C Y and Sun Q 2019 Chin. Phys. Lett. 36 066301
[15] Gao Q L, Sun Y, Shi N K, Milazzo R, Pollastri S, Olivi L, Huang Q Z, Liu H, Sanson A, Sun Q, Liang E J, Xing X R and Chen J 2020 Scripta. Mater. 187 119
[16] Heinen J, Ready A D, Bennett T D, Dubbeldam D, Friddle R W and Burtch N C 2018 ACS. Appl. Mater. Inter. 10 21079
[17] Schneider C, Bodesheim D, Ehrenreich M G, Crocellá V, Mink J, Fischer R A, Butler K T and Kieslich G 2019 J. Am. Chem. Soc. 141 10504
[18] Wang C, Chu L H, Yao Q R, Sun Y, Wu M M, Ding L, Jun Y, Na Y Y, Tang W H, Li G N, Huang Q Z and Lynn J W 2012 Phys. Rev. B 85 220103
[19] Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902
[20] Hester B R, Hancock J C, Lapidus S H and Wilkinson A P 2016 Chem. Mater. 27
[21] Han F, Hu L, Liu Z, Li Q, Wang T, Ren Y, Deng J X, Chen J and Xing X 2017 Inorg. Chem. Front. 4 343
[22] Hester B R and Wilkinson A P 2018 Inorg. Chem. 57 11275
[23] Morelock C R, Gallington L C and Wilkinson A P 2015 J. Solid. State. Chem. 222 96
[24] Morelock C R, Gallington L C and Wilkinson A P 2014 Chem. Mater. 26 1936
[25] Hu L, Chen J, Fan L L, Ren Y, Rong Y C, Pan Z, Deng J X, Yu R B and Xing X R 2014 J. Am. Chem. Soc. 136 13566
[26] Chen J, Gao Q L, Sanson A, Jiang X X, Huang Q Z, Carnera A, Rodriguez C G, Olivi L, Wang L, Hu L, Lin K, Ren Y, Lin Z S, Wang C, Gu L, Deng J X, Attfield J P and Xing X R 2017 Nat. Commun. 8 14441
[27] Yang C, Zhang Y G, Bai J M, Qu B Y, Tong P, Wang M, Lin J C, Zhang R R, Tong H Y, Wu Y, Song W H and Sun Y P 2018 J. Mater. Chem. C 6 5148
[28] Baxter S J, Hester B R, Wright B R and Wilkinson A P 2019 Chem. Mater. 31 3440
[29] Brink F J, Withers R L and Norén L 2002 J. Solid. State. Chem. 166 73
[30] Yang B, Wang J, Liu X and Zhao M 2018 Phys. Chem. Chem. Phys. 20 4781
[31] Cao W, Huang Q, Rong Y, Wang Y, Deng J, Chen J and Xing X 2016 Inorg. Chem. Front. 3 856
[32] Wang J P, Chen Q D, Li S L, Ji Y J, Mu W Y, Feng W W, Zeng G J, Liu Y W and Liang E J 2018 Chin. Phys. B 27 066501
[33] Li Y, Gao Q L, Chang D H, Sun P J, Liu J Z, Jia Y, Liang E J and Sun Q 2020 J. Phys. Condens. Mater. 32 455703
[34] Kresse G and Furthmuüller J 1996 Phys. Rev. B 54 11169
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[38] Wang L, Yuan P F, Wang F, Sun Q, Guo Z X, Liang E J and Jia Y 2014 Mater. Chem. Phys. 148 214
[39] Wang Z, Wang F, Wang L, Jia, Y and Sun Q 2013 J. Appl. Phys. 114 063508
[40] Chang D H, Liu Y M, Rao F F, Wang F, Sun Q and Jia Y 2016 Phys. Chem. Chem. Phys. 18 14503
[41] Wang C Y, Chang D H, Gao Q L, Liu C Y, Wang Q G, Huang X W and Jia Y 2020 Phys. Chem. Chem. Phys. 22 18655
[42] Ehrlich V P, Plöger F and Pietzka G 1955 Z. Anorg. Allg. Chem. 282 19
[43] Miller W, Mackenzie D S and Evans K E 2009 J. Mater. Sci. 44 5441
[44] Li C W, Tang X, Muñoz J A, Keith J B, Tracy S J, Abernathy D L and Fultz B 2011 Phys. Rev. Lett. 107 195504
[45] Gao Q L, Wang J Q, Sanson A, Sun Q, Liang E J, Xing X R and Chen J 2020 J. Am. Chem. Soc. 142 6935
[46] Gao Q L, Shi X W, Venier A, Carnera A, Huang Q Z, Wu H, Chen J, Sanson A and Liang E J 2020 Inorg. Chem. 59 14852
[47] Liu Y M, Wang Z H, Wu M Y, Sun Q, Chao M J and Jia Y 2015 Comp. Mater. Sci. 107 157
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[3] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[4] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[5] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[6] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[7] Imaging the diffusion pathway of Al3+ ion in NASICON-type (Al0.2Zr0.8)20/19Nb(PO4)3 as electrolyte for rechargeable solid-state Al batteries
Jie Wang(王捷), Chun-Wen Sun(孙春文), Yu-Dong Gong(巩玉栋), Huai-Ruo Zhang(张怀若), Jose Antonio Alonso, María Teresa Fernández-Díaz, Zhong-Lin Wang(王中林), John B Goodenough. Chin. Phys. B, 2018, 27(12): 128201.
[8] Anomalous low-temperature heat capacity in antiperovskite compounds
Xin-Ge Guo(郭新格), Jian-Chao Lin(林建超), Peng Tong(童鹏), Shuai Lin(蔺帅), Cheng Yang(杨骋), Wen-Jian Lu(鲁文建), Wen-Hai Song(宋文海), Yu-Ping Sun(孙玉平). Chin. Phys. B, 2017, 26(2): 026501.
[9] Effects of Al particles and thin layer on thermal expansion and conductivity of Al-Y2Mo3O12 cermets
Xian-Sheng Liu(刘献省), Xiang-Hong Ge(葛向红), Er-Jun Liang(梁二军), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2017, 26(11): 118101.
[10] Negative thermal expansion and photoluminescence in solid solution (HfSc)0.83W2.25P0.83O12δ
Yuan Liang(梁源), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Bao-He Yuan(袁保合), Juan Guo(郭娟), Qian Sun(孙强), Er-Jun Liang(梁二军). Chin. Phys. B, 2017, 26(10): 106501.
[11] Zero and controllable thermal expansion in HfMgMo3-xWxO12
Tao Li(李涛), Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Meng-Di Zhang(张孟迪), Hong Lian(连虹), Ying Zhang(张莹), Er-Jun Liang(梁二军), Yu-Xiao Li(李玉晓). Chin. Phys. B, 2017, 26(1): 016501.
[12] Phase transition and thermal expansion property of Cr2-xZr0.5xMg0.5xMo3O12 solid solution
Song Wen-Bo (宋文博), Wang Jun-Qiao (王俊俏), Li Zhi-Yuan (李志远), Liu Xian-Sheng (刘献省), Yuan Bao-He (袁保合), Liang Er-Jun (梁二军). Chin. Phys. B, 2014, 23(6): 066501.
[13] Mn-based antiperovskite functional materials: Review of research
Tong Peng (童鹏), Wang Bo-Sen (王铂森), Sun Yu-Ping (孙玉平). Chin. Phys. B, 2013, 22(6): 067501.
[14] The phase transition, hygroscopicity, and thermal expansion properties of Yb2-xAlxMo3O12
Li Qiu-Jie(李求杰), Yuan Bao-He(袁保合), Song Wen-Bo(宋文博), Liang Er-Jun(梁二军), and Yuan Bin(袁斌) . Chin. Phys. B, 2012, 21(4): 046501.
[15] Anomalous thermal expansion and spontaneous magnetostriction of Gd2Fe16Cr compound
Hao Yan-Ming(郝延明), Tan Ming(谭明), Wang Wei(王薇), and Wang Fang(王芳). Chin. Phys. B, 2010, 19(6): 067502.
No Suggested Reading articles found!