Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 044102    DOI: 10.1088/1674-1056/26/4/044102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Compressing ultrafast electron pulse by radio frequency cavity

Min-Jie Pei(裴敏洁)1, Da-Long Qi(齐大龙)1, Ying-Peng Qi(齐迎朋)1, Tian-Qing Jia(贾天卿)1, Shi-An Zhang(张诗按)1,2,3, Zhen-Rong Sun(孙真荣)1
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
2 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  An ultrafast electron diffraction technique with both high temporal and spatial resolution has been shown to be a powerful tool to observe the material transient structural change on an atomic scale. The space charge forces in a multi-electron bunch will greatly broaden the electron pulse width, and therefore limit the temporal resolution of the high brightness electron pulse. Here in this work, we design an ultrafast electron diffraction system, and utilize a radio frequency cavity to realize the ultrafast electron pulse compression. We experimentally demonstrate that the stretched electron pulse width of 14.98 ps with an electron energy of 40 keV and the electron number of 1.0×105 can be maximally compressed to about 0.61 ps for single-pulse measurement and 2.48 ps for multi-pulse measurement by using a 3.2-GHz radiofrequency cavity. We also theoretically and experimentally analyze the parameters influencing the electron pulse compression efficiency for single- and multi-pulse measurements by considering radiofrequency field time jitter, electron pulse time jitter and their relative time jitter. We suggest that increasing the electron energy or shortening the distance between the compression cavity and the streak cavity can further improve the electron pulse compression efficiency. These experimental and theoretical results are very helpful for designing the ultrafast electron diffraction experiment equipment and compressing the ultrafast electron pulse width in a future study.
Keywords:  ultrafast electron diffraction      electron pulse compression      radio frequency cavity  
Received:  26 July 2016      Revised:  16 November 2016      Accepted manuscript online: 
PACS:  41.75.Fr (Electron and positron beams)  
  29.27.-a (Beams in particle accelerators)  
  52.59.Sa (Space-charge-dominated beams)  
  61.05.J- (Electron diffraction and scattering)  
Fund: Project partially supported by the National Natural Science Foundation of China (Grant Nos. 51132004 and 11474096), the Fund from the Science and Technology Commission of Shanghai Municipality, China (Gant No. 14JC1401500), and the NYU-ECNU Institute of Physics at NYU Shanghai, China.
Corresponding Authors:  Shi-An Zhang, Zhen-Rong Sun     E-mail:  sazhang@phy.ecnu.edu.cn;zrsun@phy.ecnu.edu.cn

Cite this article: 

Min-Jie Pei(裴敏洁), Da-Long Qi(齐大龙), Ying-Peng Qi(齐迎朋), Tian-Qing Jia(贾天卿), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣) Compressing ultrafast electron pulse by radio frequency cavity 2017 Chin. Phys. B 26 044102

[1] Zewail A H 2010 Math. Phys. Eng. Sci. 368 1191
[2] Chan W, Averback R S, Cahill D G and Lagoutchev A 2008 Phys. Rev. B 78 214107
[3] Zhang N, Zhu X, Yang J, Wang X and Wang M 2007 Phys. Rev. Lett. 99 167602
[4] Srinivasan R, Lobastov V A, Ruan C Y and Zewail A H 2003 Helv. Chim. Acta 86 1761
[5] Miller R J D 2014 Science 343 1108
[6] Siwick B J, Dwyer J R, Jordan R E and Miller R J D 2003 Science 302 1382
[7] Siwick B J, Dwyer J R, Jordan R E and Miller R J D 2004 Chem. Phys. 299 285
[8] Sch"afer S, Liang W and Zewail A H 2011 Chem. Phys. Lett. 515 278
[9] Zewail A H 2006 Ann. Rev. Phys. Chem. 57 65
[10] Gao M, Lu C, Jean-Ruel H, Liu L C, Marx A, Onda K, Koshihara S, Nakano Y, Shao X, Hiramatsu T, Saito G, Yamochi H, Cooney R R, Moriena G, Sciaini G and Miller R J D 2013 Nature 496 343
[11] Ruan C Y, Lobastov V A, Vigliotti F, Chen S and Zewail A H 2004 Science 304 80
[12] Ihee H, Goodson B M, Srinivasan R, Lobastov V A and Zewail A H 2002 J. Phys. Chem. A 106 4087
[13] Sciaini G and Miller R J D 2011 Rep. Prog. Phys. 74 096101
[14] Miller R J D 2014 Ann. Rev. Phys. Chem. 65 583
[15] Pei M J, Qi D L, Qi Y P, Jia T Q, Zhang S A and Sun Z R 2015 Acta Phys. Sin. 64 034101 (in Chinese)
[16] Janzen A, Krenzer B, Heinz O, Zhou P, Thien D, Hanisch A and Meyer zu Heringdorf F J, Von der Linde D and Horn von Hoegen M 2007 Rev. Sci. Instrum. 78 013906
[17] Krolikowski W F and Spicer W E 1969 Phys. Rev. 185 882
[18] Gliserin A, Apolonski A, Krausz F and Baum P 2012 New J. Phys. 14 073055
[19] Aidelsburger M, Kirchner F O, Krausz F and Baum P 2010 Proc. Natl. Acad. Sci. 107 19714
[20] Hebeisen C T, Sciaini G, Harb M, Ernstorfer R, Dartigalongue T, Kruglik S G and Miller R J D 2008 Opt. Express 16 3334
[21] Waldecker L, Bertoni R and Ernstorfer R 2015 J. Appl. Phys. 117 044903
[22] Baum P, Yang D S and Zewail A H 2007 Science 318 788
[23] Musumeci P, Moody J T, Scoby C M, Gutierrez M S and Westfall M 2010 Appl. Phys. Lett. 97 063502
[24] Floettmann K 2014 Methods Phys. Res. Sect. A 740 34
[25] Qi Y, Pei M, Qi D, Yang Y, Jia T, Zhang S and Sun Z 2015 J. Phys. Chem. Lett. 6 3867
[26] Van Oudheusden T, De Jong E F, Van der Geer S B, Op't W P, Root E M, Luiten O J and Siwick B J 2007 J. Appl. Phys. 102 093501
[27] Li J, Pei M J, Qi D L, Qi Y P, Yang Y and Sun Z R 2014 Chin. Phys. B 23 124209
[28] Van Oudheusden T, Pasmans P L E M, Van der Geer S B, De Loos M J, Van der Wiel M J and Luiten O J 2010 Phys. Rev. Lett. 105 264801
[1] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[2] Design of an ultrafast electron diffractometer with multiple operation modes
Chun-Long Hu(胡春龙), Zhong Wang(王众), Yi-Jie Shi(石义杰), Chang Ye(叶昶), and Wen-Xi Liang(梁文锡). Chin. Phys. B, 2021, 30(9): 090701.
[3] Ultrafast electron diffraction
Xuan Wang(王瑄), Yutong Li(李玉同). Chin. Phys. B, 2018, 27(7): 076102.
[4] Improved method for studying the propagation dynamics of ultrafast electron pulses based on mean-field models
Meng-Chao Li(李梦超), Xuan Wang(王瑄), Guo-Qian Liao(廖国前), Yu-Tong Li(李玉同), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 054103.
[5] Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma
Li Jing (李静), Pei Min-Jie (裴敏洁), Qi Da-Long (齐大龙), Qi Ying-Peng (齐迎朋), Yang Yan (杨岩), Sun Zhen-Rong (孙真荣). Chin. Phys. B, 2014, 23(12): 124209.
No Suggested Reading articles found!