ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Compressing ultrafast electron pulse by radio frequency cavity |
Min-Jie Pei(裴敏洁)1, Da-Long Qi(齐大龙)1, Ying-Peng Qi(齐迎朋)1, Tian-Qing Jia(贾天卿)1, Shi-An Zhang(张诗按)1,2,3, Zhen-Rong Sun(孙真荣)1 |
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; 2 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China; 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract An ultrafast electron diffraction technique with both high temporal and spatial resolution has been shown to be a powerful tool to observe the material transient structural change on an atomic scale. The space charge forces in a multi-electron bunch will greatly broaden the electron pulse width, and therefore limit the temporal resolution of the high brightness electron pulse. Here in this work, we design an ultrafast electron diffraction system, and utilize a radio frequency cavity to realize the ultrafast electron pulse compression. We experimentally demonstrate that the stretched electron pulse width of 14.98 ps with an electron energy of 40 keV and the electron number of 1.0×105 can be maximally compressed to about 0.61 ps for single-pulse measurement and 2.48 ps for multi-pulse measurement by using a 3.2-GHz radiofrequency cavity. We also theoretically and experimentally analyze the parameters influencing the electron pulse compression efficiency for single- and multi-pulse measurements by considering radiofrequency field time jitter, electron pulse time jitter and their relative time jitter. We suggest that increasing the electron energy or shortening the distance between the compression cavity and the streak cavity can further improve the electron pulse compression efficiency. These experimental and theoretical results are very helpful for designing the ultrafast electron diffraction experiment equipment and compressing the ultrafast electron pulse width in a future study.
|
Received: 26 July 2016
Revised: 16 November 2016
Accepted manuscript online:
|
PACS:
|
41.75.Fr
|
(Electron and positron beams)
|
|
29.27.-a
|
(Beams in particle accelerators)
|
|
52.59.Sa
|
(Space-charge-dominated beams)
|
|
61.05.J-
|
(Electron diffraction and scattering)
|
|
Fund: Project partially supported by the National Natural Science Foundation of China (Grant Nos. 51132004 and 11474096), the Fund from the Science and Technology Commission of Shanghai Municipality, China (Gant No. 14JC1401500), and the NYU-ECNU Institute of Physics at NYU Shanghai, China. |
Corresponding Authors:
Shi-An Zhang, Zhen-Rong Sun
E-mail: sazhang@phy.ecnu.edu.cn;zrsun@phy.ecnu.edu.cn
|
Cite this article:
Min-Jie Pei(裴敏洁), Da-Long Qi(齐大龙), Ying-Peng Qi(齐迎朋), Tian-Qing Jia(贾天卿), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣) Compressing ultrafast electron pulse by radio frequency cavity 2017 Chin. Phys. B 26 044102
|
[1] |
Zewail A H 2010 Math. Phys. Eng. Sci. 368 1191
|
[2] |
Chan W, Averback R S, Cahill D G and Lagoutchev A 2008 Phys. Rev. B 78 214107
|
[3] |
Zhang N, Zhu X, Yang J, Wang X and Wang M 2007 Phys. Rev. Lett. 99 167602
|
[4] |
Srinivasan R, Lobastov V A, Ruan C Y and Zewail A H 2003 Helv. Chim. Acta 86 1761
|
[5] |
Miller R J D 2014 Science 343 1108
|
[6] |
Siwick B J, Dwyer J R, Jordan R E and Miller R J D 2003 Science 302 1382
|
[7] |
Siwick B J, Dwyer J R, Jordan R E and Miller R J D 2004 Chem. Phys. 299 285
|
[8] |
Sch"afer S, Liang W and Zewail A H 2011 Chem. Phys. Lett. 515 278
|
[9] |
Zewail A H 2006 Ann. Rev. Phys. Chem. 57 65
|
[10] |
Gao M, Lu C, Jean-Ruel H, Liu L C, Marx A, Onda K, Koshihara S, Nakano Y, Shao X, Hiramatsu T, Saito G, Yamochi H, Cooney R R, Moriena G, Sciaini G and Miller R J D 2013 Nature 496 343
|
[11] |
Ruan C Y, Lobastov V A, Vigliotti F, Chen S and Zewail A H 2004 Science 304 80
|
[12] |
Ihee H, Goodson B M, Srinivasan R, Lobastov V A and Zewail A H 2002 J. Phys. Chem. A 106 4087
|
[13] |
Sciaini G and Miller R J D 2011 Rep. Prog. Phys. 74 096101
|
[14] |
Miller R J D 2014 Ann. Rev. Phys. Chem. 65 583
|
[15] |
Pei M J, Qi D L, Qi Y P, Jia T Q, Zhang S A and Sun Z R 2015 Acta Phys. Sin. 64 034101 (in Chinese)
|
[16] |
Janzen A, Krenzer B, Heinz O, Zhou P, Thien D, Hanisch A and Meyer zu Heringdorf F J, Von der Linde D and Horn von Hoegen M 2007 Rev. Sci. Instrum. 78 013906
|
[17] |
Krolikowski W F and Spicer W E 1969 Phys. Rev. 185 882
|
[18] |
Gliserin A, Apolonski A, Krausz F and Baum P 2012 New J. Phys. 14 073055
|
[19] |
Aidelsburger M, Kirchner F O, Krausz F and Baum P 2010 Proc. Natl. Acad. Sci. 107 19714
|
[20] |
Hebeisen C T, Sciaini G, Harb M, Ernstorfer R, Dartigalongue T, Kruglik S G and Miller R J D 2008 Opt. Express 16 3334
|
[21] |
Waldecker L, Bertoni R and Ernstorfer R 2015 J. Appl. Phys. 117 044903
|
[22] |
Baum P, Yang D S and Zewail A H 2007 Science 318 788
|
[23] |
Musumeci P, Moody J T, Scoby C M, Gutierrez M S and Westfall M 2010 Appl. Phys. Lett. 97 063502
|
[24] |
Floettmann K 2014 Methods Phys. Res. Sect. A 740 34
|
[25] |
Qi Y, Pei M, Qi D, Yang Y, Jia T, Zhang S and Sun Z 2015 J. Phys. Chem. Lett. 6 3867
|
[26] |
Van Oudheusden T, De Jong E F, Van der Geer S B, Op't W P, Root E M, Luiten O J and Siwick B J 2007 J. Appl. Phys. 102 093501
|
[27] |
Li J, Pei M J, Qi D L, Qi Y P, Yang Y and Sun Z R 2014 Chin. Phys. B 23 124209
|
[28] |
Van Oudheusden T, Pasmans P L E M, Van der Geer S B, De Loos M J, Van der Wiel M J and Luiten O J 2010 Phys. Rev. Lett. 105 264801
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|