ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma |
Li Jing (李静), Pei Min-Jie (裴敏洁), Qi Da-Long (齐大龙), Qi Ying-Peng (齐迎朋), Yang Yan (杨岩), Sun Zhen-Rong (孙真荣) |
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China |
|
|
Abstract A method is proposed to determine the temporal width of high-brightness radio-frequency compressed electron pulses based on cross-correlation technique involving electron bunches and laser-induced plasma. The temporal evolution of 2-dimensional transverse profile of ultrafast electron bunches repelled by the formed transient electric field of laser-induced plasma on a silver needle is investigated, and the pulse-width can be obtained by analyzing these time-dependent images. This approach can characterize radio-frequency compressed ultrafast electron bunches with picosecond or sub-picosecond timescale and up to 105 electron numbers.
|
Received: 14 February 2014
Revised: 26 May 2014
Accepted manuscript online:
|
PACS:
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
07.77.Ka
|
(Charged-particle beam sources and detectors)
|
|
52.40.Mj
|
(Particle beam interactions in plasmas)
|
|
61.05.J-
|
(Electron diffraction and scattering)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004060, 11027403, and 11304224) and the Shanghai Municipal Science and Technology Commission, China (Grant Nos. 10XD1401800, 09142200501, 09ZR1409300, 09JC1404700, and 10JC1404500). |
Corresponding Authors:
Sun Zhen-Rong
E-mail: zrsun@phy.ecnu.edu.cn
|
Cite this article:
Li Jing (李静), Pei Min-Jie (裴敏洁), Qi Da-Long (齐大龙), Qi Ying-Peng (齐迎朋), Yang Yan (杨岩), Sun Zhen-Rong (孙真荣) Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma 2014 Chin. Phys. B 23 124209
|
|
| [1] | Ihee H, Goodson B M, Srinivasan R, Lobastov V A and Zewail A H 2002 J. Phys. Chem. A 106 4087
|
|
| [2] | Wang X, Nie S H, Cao J M, Zhang Z C, Liang W X, Zhu P F, Sheng Z M and Zhang J 2009 Acta Phys. Sin. 58 5546 (in Chinese)
|
|
| [3] | Zhu P F, Zhang Z C, Li R Z, Chen L, Sheng Z M and Zhang J 2010 Acta Phys. Sin. 59 6412 (in Chinese)
|
|
| [4] | Song C, Jiang H, Mancuso A, Amirbekian B, Peng L, Sun R, Shah S S, Zhou Z H, Ishikawa T and Miao J 2008 Phys. Rev. Lett. 101 158101
|
|
| [5] | Tom H W K, Aumiller G D and Brito C H 1988 Phys. Rev. Lett. 60 1438
|
|
| [6] | Zhang N, Zhu X, Yang J, Wang X and Wang M 2007 Phys. Rev. Lett. 99 167602
|
|
| [7] | Cao J, Hao Z, Park H, Tao C, Kau D and Blaszczyk L 2003 Appl. Phys. Lett. 83 1044
|
|
| [8] | Liang W X, Zhu P F, Wang X, Nie S H, Zhang Z C, Clinite R, Cao J M, Sheng Z M and Zhang J 2009 Chin. Phys. Lett. 26 020701
|
|
| [9] | Liang W X, Zhu P F, Wang X, Nie S H, Zhang Z C, Cao J M, Sheng Z M and Zhang J 2009 Acta Phys. Sin. 58 5539 (in Chinese)
|
|
| [10] | Wang X, Nie S H, Li J J, Clinite R, Wartenbe M, Martin M, Liang W X and Cao J 2008 Appl. Phys. Lett. 92 121918
|
|
| [11] | Ernstorfer R, Harb M, Hebeisen C T, Sciaini G, Dartigalongue T and Miller R J D 2009 Science 323 1033
|
|
| [12] | Wen W L, Lei X H, Hu X, Xu X Y, Wang J F, Cao X B, Liu H L, Wang C, Dang L H and Tian J S 2011 Chin. Phys. B 20 114102
|
|
| [13] | King W E, Campbell G H, Frank A, Reed B, Schmerge J F, Siwick B J, Stuart B C and Weber P M 2005 J. Appl. Phys. 97 111101
|
|
| [14] | Oudheusden T, Jong E F, Geer S B, Root W P, Luiten O J and Siwick B J 2007 J. Appl. Phys. 102 093501
|
|
| [15] | Kassier G H, Haupt K, Erasmus N, Rohwer E G, Bergmann H M, Schwoerer H, Coelho S M M and Auret F D 2010 Rev. Sci. Instrum. 81 105103
|
|
| [16] | Gao M, Ruel H J, Cooney R R, Stampe J, Jong M, Harb M, Sciaini G, Moriena G and Miller R J D 2012 Opt. Express 20 12048
|
|
| [17] | Tao Z S, Zhang H, Duxbury P M, Berz M and Ruan C Y 2012 J. Appl. Phys. 111 044316
|
|
| [18] | Scoby C M, Li R K, Threlkeld E, To H and Musumeci P 2013 Appl. Phys. Lett. 102 023506
|
|
| [19] | Park H, Hao Z, Wang X, Nie S, Clinite R and Cao J 2005 Rev. Sci. Instrum. 76 083905
|
|
| [20] | Park H S, Kwon O H, Baskin J S, Barwick B and Zewail A H 2009 Nano Lett. 9 3954
|
|
| [21] | Kwon O H, Barwick B, Park H S, Baskin J S and Zewail A H 2008 Proc. Nalt. Acad. Sci. USA 105 8519
|
|
| [22] | Wang Y L, Zhou X G, Wu H and Ding L E 2009 Chin. Phys. B 18 4308
|
|
| [23] | Dantus M, Kim S B, Williamson J C and Zewail A H 1994 J. Phys. Chem. 98 2782
|
|
| [24] | Nie S H, Wang X, Li J, Clinite R and Cao J 2009 Microsc. Res. Tech. 72 131
|
|
| [25] | Chatelain R P, Morrison V R, Godbout C and Siwick B J 2012 Appl. Phys. Lett. 101 081901
|
|
| [26] | General Particle Tracer
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|