|
|
Diffusion behavior of hydrogen isotopes in tungsten revisited by molecular dynamics simulations |
Mingjie Qiu(丘明杰), Lei Zhai(翟磊), Jiechao Cui(崔节超), Baoqin Fu(付宝勤), Min Li(李敏), Qing Hou(侯氢) |
Key Laboratory for Radiation Physics and Technology(Ministry of Education), Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China |
|
|
Abstract Molecular dynamics simulations were performed to study the diffusion behavior of hydrogen isotopes in single-crystal tungsten in the temperature range of 300-2000 K. The simulations show that the diffusion coefficient of H isotopes exhibits non-Arrhenius behavior, though this deviation from Arrhenius behavior is slight. Many-body and anharmonic effects of the potential surface may induce slight isotope-dependence by the activation energy; however, the dependence of the pre-factor of the diffusion coefficient on the isotope mass is diminished. The simulation results for H-atom migration near W surfaces suggest that no trap mutations occur for H atoms diffusing near either W{100} or W{111} surfaces, in contrast to the findings for He diffusion near W surfaces. Based on the H behavior obtained by our MD simulations, the time evolution of the concentration distribution of interstitial H atoms in a semi-infinite W single crystal irradiated by energetic H projectiles was calculated. The effect of H concentration on H diffusion is discussed, and the applicability of the diffusion coefficients obtained for dilute H in W is assessed.
|
Received: 10 January 2018
Revised: 26 April 2018
Accepted manuscript online:
|
PACS:
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
52.40.Hf
|
(Plasma-material interactions; boundary layer effects)
|
|
52.65.Yy
|
(Molecular dynamics methods)
|
|
66.30.J-
|
(Diffusion of impurities ?)
|
|
Fund: Project supported by the National Magnetic Confinement Fusion Program of China (Grant No. 2013GB109002). |
Corresponding Authors:
Qing Hou
E-mail: qhou@scu.edu.cn
|
Cite this article:
Mingjie Qiu(丘明杰), Lei Zhai(翟磊), Jiechao Cui(崔节超), Baoqin Fu(付宝勤), Min Li(李敏), Qing Hou(侯氢) Diffusion behavior of hydrogen isotopes in tungsten revisited by molecular dynamics simulations 2018 Chin. Phys. B 27 073103
|
[1] |
Rieth M, Dudarev S L, Gonzalez de Vicente S M, et al. 2013 J. Nucl. Mater. 432 482
|
[2] |
Ueda Y, Lee H T, Ohno N, Kajita S, Kimura A, Kasada R, Nagasaka T, Hatano Y, Hasegawa A, Kurishita H and Oya Y 2011 Phys. Scr. T145 014029
|
[3] |
Linsmeier Ch, Rieth M, Aktaa J, et al. 2017 Nucl. Fusion 57 092007
|
[4] |
Taylor N, Merrill B, Cadwallader L, Di Pace L, El-Guebaly L, Humrickhouse P, Panayotov D, Pinna T, Porfiri M-T, Reyes S, Shimada M and Willms S 2017 Nucl. Fusion 57 092003
|
[5] |
Tanabe T 2014 Phys. Scr. T159 014044
|
[6] |
Roth J and Schmid K 2011 Phys. Scr. T145 014031
|
[7] |
Causey R A and Venhaus T J 2001 Phys. Scr. T94 9
|
[8] |
Ueda Y, Schmid K, Balden M, Coenen J W, Loewenhoff T, Ito A, Hasegawa A, Hardie C, Porton M and Gilbert M 2017 Nucl. Fusion 57 092006
|
[9] |
Watanabe T, Kaneko T, Matsunami N, Ohno N, Kajita S and Kuwabara T 2015 J. Nucl. Mater. 463 1049
|
[10] |
Roszell J P, Davis J W and Haasz A A 2012 J. Nucl. Mater. 429 48
|
[11] |
García-Rosales C, Franzen P, Plank H, Roth J and Gauthier E 1996 J. Nucl. Mater. 233 803
|
[12] |
Frauenfelder R. 1969 J. Vac. Sci. Technol. 6 388
|
[13] |
Franzen P, Garcia-Rosales C, Plank H and Alimov V K 1997 J. Nucl. Mater. 241 1082
|
[14] |
Guterl J, Smirnov R D, Krasheninnikov S I, Zibrov M and Pisarev A A 2015 Nucl. Fusion 55 093017
|
[15] |
Poon M, Haasz A A and Davis J W 2008 J. Nucl. Mater. 374 390
|
[16] |
Ogorodnikova O V. 2009 J. Nucl. Mater. 390 651
|
[17] |
Gasparyan Y M, Ogorodnikova O V., Efimov V S, Mednikov A, Marenkov E D, Pisarev A A, Markelj S and Čadež I 2015 J. Nucl. Mater. 463 1013
|
[18] |
Lu G H, Zhou H B and Becquart C S 2014 Nucl. Fusion 54 86001
|
[19] |
Liu Y L, Zhang Y, Luo G N and Lu G H 2009 J. Nucl. Mater. 390 1032
|
[20] |
Xu J and Zhao J 2009 Nucl. Instrum. Methods Phys. Res. B 267 3170
|
[21] |
Johnson D F and Carter E A 2010 J. Mater. Res. 25 315
|
[22] |
Heinola K and Ahlgren T 2010 J. Appl. Phys. 107 113531
|
[23] |
Fernandez N, Ferro Y and Kato D 2015 Acta Mater. 94 307
|
[24] |
Picraux S T and Vook F L 1974 Phys. Rev. Lett. 33 1216
|
[25] |
Wang J, Zhou Y, Li M and Hou Q 2012 J. Nucl. Mater. 427 290
|
[26] |
Wen H, Semenov A A and Woo C H 2017 J. Nucl. Mater. 493 21
|
[27] |
Perez D, Vogel T and Uberuaga B P 2014 Phys. Rev. B 90 014102
|
[28] |
Hammond K D and Wirth B D 2014 J. Appl. Phys. 116 143301
|
[29] |
Hu L, Hammond K D, Wirth B D and Maroudas D 2014 Surf. Sci. 626 21
|
[30] |
Wang X, Wu Z and Hou Q 2015 J. Nucl. Mater. 465 455
|
[31] |
Hou Q, Li M, Zhou Y, Cui J, Cui Z, Wang J 2013 Comput. Phys. Commun. 184 2091
|
[32] |
Bonny G, Grigorev P and Terentyev D 2014 J. Phys.:Condens. Matter 26 485001
|
[33] |
Marinica M C, Ventelon L, Gilbert M R, Proville L, Dudarev S L, Marian J, Bencteux G and Willaime F 2013 J. Phys.:Condens. Matter 25 395502
|
[34] |
Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
|
[35] |
Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
|
[36] |
Shu X, Tao P, Li X and Yu Y 2013 Nucl. Instrum. Methods Phys. Res. B 303 84
|
[37] |
Wen H, Semenov A A and Woo C H 2017 J. Nucl. Mater. 493 21
|
[38] |
Boisvert G and Lewis L 1996 Phys. Rev. B 54 2880
|
[39] |
Liu Y N, Wu T, Yu Y, Li X C, Shu X and Lu G H 2014 J. Nucl. Mater. 455 676
|
[40] |
Vineyard G H 1957 J. Chem. Phys. Solids 3 121
|
[41] |
Hodille E A, Založnik A, Markelj S, Schwarz-Selinger T, Becquart C S, Bisson R and Grisolia C 2017 Nucl. Fusion 57 056002
|
[42] |
Henriksson K O E, Nordlund K, Krasheninnikov A and Keinonen J 2005 Appl. Phys. Lett. 87 163113
|
[43] |
Yang X and Oyeniyi W O 2017 Fusion Eng. Des. 114 113
|
[44] |
Ahlgren T and Bukonte L 2016 J. Nucl. Mater. 479 195
|
[45] |
Hou Q, Luo Z and An Z 1994 J. Appl. Phys. 76 5690
|
[46] |
Bauer J, Schwarz-Selinger T, Schmid K, Balden M, Manhard A and Von Toussaint U 2017 Nucl. Fusion 57 086015
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|