Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 073103    DOI: 10.1088/1674-1056/27/7/073103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Diffusion behavior of hydrogen isotopes in tungsten revisited by molecular dynamics simulations

Mingjie Qiu(丘明杰), Lei Zhai(翟磊), Jiechao Cui(崔节超), Baoqin Fu(付宝勤), Min Li(李敏), Qing Hou(侯氢)
Key Laboratory for Radiation Physics and Technology(Ministry of Education), Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
Abstract  

Molecular dynamics simulations were performed to study the diffusion behavior of hydrogen isotopes in single-crystal tungsten in the temperature range of 300-2000 K. The simulations show that the diffusion coefficient of H isotopes exhibits non-Arrhenius behavior, though this deviation from Arrhenius behavior is slight. Many-body and anharmonic effects of the potential surface may induce slight isotope-dependence by the activation energy; however, the dependence of the pre-factor of the diffusion coefficient on the isotope mass is diminished. The simulation results for H-atom migration near W surfaces suggest that no trap mutations occur for H atoms diffusing near either W{100} or W{111} surfaces, in contrast to the findings for He diffusion near W surfaces. Based on the H behavior obtained by our MD simulations, the time evolution of the concentration distribution of interstitial H atoms in a semi-infinite W single crystal irradiated by energetic H projectiles was calculated. The effect of H concentration on H diffusion is discussed, and the applicability of the diffusion coefficients obtained for dilute H in W is assessed.

Keywords:  hydrogen isotopes      tungsten      diffusion      molecular dynamics  
Received:  10 January 2018      Revised:  26 April 2018      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  52.65.Yy (Molecular dynamics methods)  
  66.30.J- (Diffusion of impurities ?)  
Fund: 

Project supported by the National Magnetic Confinement Fusion Program of China (Grant No. 2013GB109002).

Corresponding Authors:  Qing Hou     E-mail:  qhou@scu.edu.cn

Cite this article: 

Mingjie Qiu(丘明杰), Lei Zhai(翟磊), Jiechao Cui(崔节超), Baoqin Fu(付宝勤), Min Li(李敏), Qing Hou(侯氢) Diffusion behavior of hydrogen isotopes in tungsten revisited by molecular dynamics simulations 2018 Chin. Phys. B 27 073103

[1] Rieth M, Dudarev S L, Gonzalez de Vicente S M, et al. 2013 J. Nucl. Mater. 432 482
[2] Ueda Y, Lee H T, Ohno N, Kajita S, Kimura A, Kasada R, Nagasaka T, Hatano Y, Hasegawa A, Kurishita H and Oya Y 2011 Phys. Scr. T145 014029
[3] Linsmeier Ch, Rieth M, Aktaa J, et al. 2017 Nucl. Fusion 57 092007
[4] Taylor N, Merrill B, Cadwallader L, Di Pace L, El-Guebaly L, Humrickhouse P, Panayotov D, Pinna T, Porfiri M-T, Reyes S, Shimada M and Willms S 2017 Nucl. Fusion 57 092003
[5] Tanabe T 2014 Phys. Scr. T159 014044
[6] Roth J and Schmid K 2011 Phys. Scr. T145 014031
[7] Causey R A and Venhaus T J 2001 Phys. Scr. T94 9
[8] Ueda Y, Schmid K, Balden M, Coenen J W, Loewenhoff T, Ito A, Hasegawa A, Hardie C, Porton M and Gilbert M 2017 Nucl. Fusion 57 092006
[9] Watanabe T, Kaneko T, Matsunami N, Ohno N, Kajita S and Kuwabara T 2015 J. Nucl. Mater. 463 1049
[10] Roszell J P, Davis J W and Haasz A A 2012 J. Nucl. Mater. 429 48
[11] García-Rosales C, Franzen P, Plank H, Roth J and Gauthier E 1996 J. Nucl. Mater. 233 803
[12] Frauenfelder R. 1969 J. Vac. Sci. Technol. 6 388
[13] Franzen P, Garcia-Rosales C, Plank H and Alimov V K 1997 J. Nucl. Mater. 241 1082
[14] Guterl J, Smirnov R D, Krasheninnikov S I, Zibrov M and Pisarev A A 2015 Nucl. Fusion 55 093017
[15] Poon M, Haasz A A and Davis J W 2008 J. Nucl. Mater. 374 390
[16] Ogorodnikova O V. 2009 J. Nucl. Mater. 390 651
[17] Gasparyan Y M, Ogorodnikova O V., Efimov V S, Mednikov A, Marenkov E D, Pisarev A A, Markelj S and Čadež I 2015 J. Nucl. Mater. 463 1013
[18] Lu G H, Zhou H B and Becquart C S 2014 Nucl. Fusion 54 86001
[19] Liu Y L, Zhang Y, Luo G N and Lu G H 2009 J. Nucl. Mater. 390 1032
[20] Xu J and Zhao J 2009 Nucl. Instrum. Methods Phys. Res. B 267 3170
[21] Johnson D F and Carter E A 2010 J. Mater. Res. 25 315
[22] Heinola K and Ahlgren T 2010 J. Appl. Phys. 107 113531
[23] Fernandez N, Ferro Y and Kato D 2015 Acta Mater. 94 307
[24] Picraux S T and Vook F L 1974 Phys. Rev. Lett. 33 1216
[25] Wang J, Zhou Y, Li M and Hou Q 2012 J. Nucl. Mater. 427 290
[26] Wen H, Semenov A A and Woo C H 2017 J. Nucl. Mater. 493 21
[27] Perez D, Vogel T and Uberuaga B P 2014 Phys. Rev. B 90 014102
[28] Hammond K D and Wirth B D 2014 J. Appl. Phys. 116 143301
[29] Hu L, Hammond K D, Wirth B D and Maroudas D 2014 Surf. Sci. 626 21
[30] Wang X, Wu Z and Hou Q 2015 J. Nucl. Mater. 465 455
[31] Hou Q, Li M, Zhou Y, Cui J, Cui Z, Wang J 2013 Comput. Phys. Commun. 184 2091
[32] Bonny G, Grigorev P and Terentyev D 2014 J. Phys.:Condens. Matter 26 485001
[33] Marinica M C, Ventelon L, Gilbert M R, Proville L, Dudarev S L, Marian J, Bencteux G and Willaime F 2013 J. Phys.:Condens. Matter 25 395502
[34] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[35] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[36] Shu X, Tao P, Li X and Yu Y 2013 Nucl. Instrum. Methods Phys. Res. B 303 84
[37] Wen H, Semenov A A and Woo C H 2017 J. Nucl. Mater. 493 21
[38] Boisvert G and Lewis L 1996 Phys. Rev. B 54 2880
[39] Liu Y N, Wu T, Yu Y, Li X C, Shu X and Lu G H 2014 J. Nucl. Mater. 455 676
[40] Vineyard G H 1957 J. Chem. Phys. Solids 3 121
[41] Hodille E A, Založnik A, Markelj S, Schwarz-Selinger T, Becquart C S, Bisson R and Grisolia C 2017 Nucl. Fusion 57 056002
[42] Henriksson K O E, Nordlund K, Krasheninnikov A and Keinonen J 2005 Appl. Phys. Lett. 87 163113
[43] Yang X and Oyeniyi W O 2017 Fusion Eng. Des. 114 113
[44] Ahlgren T and Bukonte L 2016 J. Nucl. Mater. 479 195
[45] Hou Q, Luo Z and An Z 1994 J. Appl. Phys. 76 5690
[46] Bauer J, Schwarz-Selinger T, Schmid K, Balden M, Manhard A and Von Toussaint U 2017 Nucl. Fusion 57 086015
[1] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[2] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[5] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[10] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[11] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[12] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[13] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[14] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[15] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
No Suggested Reading articles found!