Special Issue:
TOPICAL REVIEW — SECUF: Breakthroughs and opportunities for the research of physical science
|
TOPICAL REVIEW—SECUF: Breakthroughs and opportunities for the research of physical science |
Prev
Next
|
|
|
Ultrafast electron microscopy in material science |
Huaixin Yang(杨槐馨)1,2, Shuaishuai Sun(孙帅帅)1, Ming Zhang(张明)1,2, Zhongwen Li(李中文)1,2, Zian Li(李子安)1, Peng Xu(徐鹏)1, Huanfang Tian(田焕芳)1, Jianqi Li(李建奇)1,2,3 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China |
|
|
Abstract Recent advances in the ultrafast transmission electron microscope (UTEM), with combined spatial and temporal resolutions, have made it possible to directly visualize the atomic, electronic, and magnetic structural dynamics of materials. In this review, we highlight the recent progress of UTEM techniques and their applications to a variety of material systems. It is emphasized that numerous significant ultrafast dynamic issues in material science can be solved by the integration of the pump-probe approach with the well-developed conventional transmission electron microscopy (TEM) techniques. For instance, UTEM diffraction experiments can be performed to investigate photoinduced atomic-scale dynamics, including the chemical reactions, non-equilibrium phase transition/melting, and lattice phonon coupling. UTEM imaging methods are invaluable for studying, in real space, the elementary processes of structural and morphological changes, as well as magnetic-domain evolution in the Lorentz TEM mode, at a high magnification. UTEM electron energy-loss spectroscopic techniques allow the examination of the ultrafast valence states and electronic structure dynamics, while photoinduced near-field electron microscopy extends the capability of the UTEM to the regime of electromagnetic-field imaging with a high real space resolution.
|
Received: 03 April 2018
Revised: 12 May 2018
Accepted manuscript online:
|
PACS:
|
07.78.+s
|
(Electron, positron, and ion microscopes; electron diffractometers)
|
|
61.05.J-
|
(Electron diffraction and scattering)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
64.70.-p
|
(Specific phase transitions)
|
|
Corresponding Authors:
Jianqi Li
E-mail: ljq@iphy.ac.cn
|
Cite this article:
Huaixin Yang(杨槐馨), Shuaishuai Sun(孙帅帅), Ming Zhang(张明), Zhongwen Li(李中文), Zian Li(李子安), Peng Xu(徐鹏), Huanfang Tian(田焕芳), Jianqi Li(李建奇) Ultrafast electron microscopy in material science 2018 Chin. Phys. B 27 070703
|
[1] |
Chergui M and Zewail A H 2009 Chemphyschem:A Eur. J. Chem. Phys. Phys. Chem. 10 28
|
[2] |
Yang L X, Rohde G, Rohwer T, Stange A, Hanff K, Sohrt C, Rettig L, Cortes R, Chen F, Feng D L, Wolf T, Kamble B, Eremin I, Popmintchev T, Murnane M M, Kapteyn H C, Kipp L, Fink J, Bauer M, Bovensiepen U and Rossnagel K 2014 Phys. Rev. Lett. 112 207001
|
[3] |
Sun D, Lai J W, Ma J C, Wang Q S and Liu J 2017 Chin. Phys. B 26 037801
|
[4] |
Dahms F, Fingerhut B P, Nibbering E T J, Pines E and Elsaesser T 2017 Science 357 491
|
[5] |
Bostedt C, Boutet S, Fritz D M, Huang Z R, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J and Williams G J 2016 Rev. Mod. Phys. 88 015007
|
[6] |
Rettig L, Mariager S O, Ferrer A, Grubel S, Johnson J A, Rittmann J, Wolf T, Johnson S L, Ingold G, Beaud P and Staub U 2015 Phys. Rev. Lett. 114 067402
|
[7] |
Zewail A H 2009 4D Electron Microscopy Imaging in Space and Time (Imperial College Press)
|
[8] |
Domer H and Bostanjoglo O 2003 Rev. Sci. Instrum. 74 4369
|
[9] |
Zewail A H 2010 Science 328 187
|
[10] |
Browning N D, Bonds M A, Campbell G H, Evans J E, LaGrange T, Jungjohann K L, Masiel D J, McKeown J, Mehraeen S, Reed B W and Santala M 2012 Curr. Opinion Solid State Mater. Sci. 16 23
|
[11] |
Cao G L, Sun S S, Li Z W, Tian H F, Yang H X and Li J Q 2015 Sci. Rep.-Uk 5 8404
|
[12] |
Park H S, Baskin J S, Kwon O H and Zewail A H 2007 Nano Lett. 7 2545
|
[13] |
Brett Barwick H S P, Oh-Hoon Kwon, J Spencer Baskin and Ahmed H Zewail 2008 Science 1227
|
[14] |
Bostanjoglo O 2002 Adv. Imaging Electron. Phys. 121 1
|
[15] |
Hassan M T, Baskin J S, Liao B and Zewail A H 2017 Nat. Photon. 11 425
|
[16] |
Shorokhov D and Zewail A H 2009 J. Am. Chem. Soc. 131 17998
|
[17] |
Barwick B, Flannigan D J and Zewail A H 2009 Nature 462 902
|
[18] |
Batson P E 2011 Proc. Natl. Academy Sci. United States Am. 108 3099
|
[19] |
Flannigan D J, Barwick B and Zewail A H 2010 Proc. Natl. Academy Sci. United States Am. 107 9933
|
[20] |
Flannigan D J, Park S T and Zewail A H 2010 Nano Lett. 10 4767
|
[21] |
King W E, Campbell G H, Frank A, Reed B, Schmerge J F, Siwick B J, Stuart B C and Weber P M 2005 J. Appl. Phys. 97 111101
|
[22] |
Lobastov V A, Srinivasan R and Zewail A H 2005 Proc. Natl. Academy Sci. United States Am. 102 7069
|
[23] |
Miller R J, Ernstorfer R, Harb M, Gao M, Hebeisen C T, Jean-Ruel H, Lu C, Moriena G and Sciaini G 2010 Acta Crystallogr. Sect. A:Found. Crystallogr. 66 137
|
[24] |
Shorokhov D and Zewail A H 2008 Phys. Chem. Chem. Phys.:PCCP 10 2879
|
[25] |
Thomas J M 2005 Angew. Chem. 44 5563
|
[26] |
Vanacore G M, Fitzpatrick A W P and Zewail A H 2016 Nano Today 11 228
|
[27] |
Zewail A H 2006 Annu. Rev. Phys. Chem. 57 65
|
[28] |
Zewail A H 2010 Philos. Trans. Ser. A:Math. Phys. Eng. Sci. 368 1191
|
[29] |
Ziegler A 2011 MRS Bull. 36 121
|
[30] |
Carbone F 2011 Eur. Phys. J.-Appl. Phys. 54 33503
|
[31] |
Plemmons D A, Suri P K and Flannigan D J 2015 Chem. Mater. 27 3178
|
[32] |
Carbone F 2010 Chem. Phys. Lett. 496 291
|
[33] |
Piazza L, Ma C, Yang H X, Mann A, Zhu Y, Li J Q and Carbone F 2014 Structural Dyn. 1 014501
|
[34] |
Bucker K, Picher M, Cregut O, LaGrange T, Reed B W, Park S T, Masiel D J and Banhart F 2016 Ultramicroscopy 171 8
|
[35] |
Lee Y M, Kim Y J, Kim Y J and Kwon O H 2017 Structural Dyn. 4 044023
|
[36] |
Ji S, Piazza L, Cao G, Park S T, Reed B W, Masiel D J and Weissenrieder J 2017 Structural Dyn. 4 054303
|
[37] |
Andreev S V, Aseev S A, Bagratashvili V N, Vorob'ev N S, Ishchenko A A, Kompanets V O, Malinovskii A L, Mironov B N, Timofeev A A, Chekalin S V, Shashkov E V and Ryabov E A 2017 Quantum Electron 47 116
|
[38] |
Kieft E, Schliep K B, Suri P K and Flannigan D J 2015 Structural Dyn. 2 051101
|
[39] |
Petruk A A, Pichugin K and Sciaini G 2017 Structural Dyn. 4 044005
|
[40] |
Plemmons D A and Flannigan D J 2017 Chem. Phys. Lett. 683 186
|
[41] |
Piazza L, Masiel D J, LaGrange T, Reed B W, Barwick B and Carbone F 2013 Chem. Phys. 423 79
|
[42] |
Yurtsever A and Zewail A H 2009 Science 326 708
|
[43] |
Park S T, Flannigan D J and Zewail A H 2011 J. Am. Chem. Soc. 133 1730
|
[44] |
Park S T, Flannigan D J and Zewail A H 2012 J. Am. Chem. Soc. 134 9146
|
[45] |
Grinolds M S, Lobastov V A, Weissenrieder J and Zewail A H 2006 Proc. Natl. Academy Sci. United States Am. 103 18427
|
[46] |
Li Z W, Sun S S, Li Z A, Zhang M, Cao G L, Tian H F, Yang H X and Li J Q 2017 Nanoscale 9 13313
|
[47] |
Eichberger M, Schafer H, Krumova M, Beyer M, Demsar J, Berger H, Moriena G, Sciaini G and Miller R J D 2010 Nature 468 799
|
[48] |
Sun S S, Wei L L, Li Z W, Cao G L, Liu Y, Lu W J, Sun Y P, Tian H F, Yang H X and Li J Q 2015 Phys. Rev. B 92 224303
|
[49] |
Wei L L, Sun S S, Guo C, Li Z W, Sun K, Liu Y, Lu W J, Sun Y P, Tian H F, Yang H X and Li J Q 2017 Structural Dyn. 4 044012
|
[50] |
Campbell G H, LaGrange T, Kim J S, Reed B W and Browning N D 2010 J. Electron. Microscopy 59 Suppl 1 S67
|
[51] |
Cremons D R, Du D X and Flannigan D J 2017 Phys. Rev. Mater. 1 073801
|
[52] |
Cremons D R, Plemmons D A and Flannigan D J 2016 Nat. Commun. 7 11230
|
[53] |
Flannigan D J and Zewail A H 2010 Nano Lett. 10 1892
|
[54] |
Kwon O H, Park H S, Baskin J S and Zewail A H 2010 Nano Lett. 10 3190
|
[55] |
McKenna A J, Eliason J K and Flannigan D J 2017 Nano Lett. 17 3952
|
[56] |
Park H S, Baskin J S, Barwick B, Kwon O H and Zewail A H 2009 Ultramicroscopy 110 7
|
[57] |
Park H S, Baskin J S and Zewail A H 2010 Nano Lett. 10 3796
|
[58] |
Schliep K B, Quarterman P, Wang J P and Flannigan D J 2017 Appl. Phys. Lett. 110 222404
|
[59] |
Zhang M, Cao G, Tian H, Sun S, Li Z, Li X, Guo C, Li Z, Yang H and Li J 2017 Phys. Rev. B 96 174203
|
[60] |
McVitie S and Cushley M 2006 Ultramicroscopy 106 423
|
[61] |
Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
|
[62] |
Loudon J C, Yazdi S, Kasama T, Zhigadlo N D and Karpinski J 2015 Phys. Rev. B 91 054505
|
[63] |
Mukai M, Okunishi E, Ashino M, Omoto K, Fukuda T, Ikeda A, Somehara K, Kaneyama T, Saitoh T, Hirayama T and Ikuhara Y 2015 Microscopy-Jpn. 64 151
|
[64] |
Carbone F, Kwon O H and Zewail A H 2009 Science 325 181
|
[65] |
Vanacore G M, van der Veen R M and Zewail A H 2015 ACS Nano 9 1721
|
[66] |
van der Veen R M, Penfold T J and Zewail A H 2015 Structural Dyn. 2 024302
|
[67] |
Ortalan V and Zewail A H 2011 J. Am. Chem. Soc. 133 10732
|
[68] |
Su Z, Baskin J S, Zhou W, Thomas J M and Zewail A H 2017 J. Am. Chem. Soc. 139 4916
|
[69] |
Asenjo-Garcia A and García de Abajo F J 2013 New J. Phys. 15 103021
|
[70] |
Yurtsever A, Baskin J S and Zewail A H 2012 Nano Lett. 12 5027
|
[71] |
Yurtsever A and Zewail A H 2012 Nano Lett. 12 3334
|
[72] |
Ryabov A and Baum P 2016 Science 353 374
|
[73] |
Park S T, Yurtsever A, Baskin J S and Zewail A H 2013 Proc. Natl. Academy Sci. United States Am. 110 9277
|
[74] |
Lummen T T, Lamb R J, Berruto G, LaGrange T, Dal Negro L, Garcia de Abajo F J, McGrouther D, Barwick B and Carbone F 2016 Nat. Commun. 7 13156
|
[75] |
Barwick B and Zewail A H 2015 ACS Photon. 2 1391
|
[76] |
Feist A, Echternkamp K E, Schauss J, Yalunin S V, Schafer S and Ropers C 2015 Nature 521 200
|
[77] |
Piazza L, Lummen T T, Quinonez E, Murooka Y, Reed B W, Barwick B and Carbone F 2015 Nat. Commun. 6 6407
|
[78] |
Storeck G, Vogelgesang S, Sivis M, Schafer S and Ropers C 2017 Structural Dyn. 4 044024
|
[79] |
Feist A, Bach N, Rubiano da Silva N, Danz T, Moller M, Priebe K E, Domrose T, Gatzmann J G, Rost S, Schauss J, Strauch S, Bormann R, Sivis M, Schafer S and Ropers C 2017 Ultramicroscopy 176 63
|
[80] |
Caruso G M, Houdellier F, Abeilhou P and Arbouet A 2017 Appl. Phys. Lett. 111 023101
|
[81] |
Yang J, Yoshida Y and Shibata H 2015 Electron. Commun. Jpn. 98 50
|
[82] |
Priebe K E, Rathje C, Yalunin S V, Hohage T, Feist A, Schaer S and Ropers C 2017 Nat. Photon. 11 793
|
[83] |
Morimoto Y and Baum P 2018 Nat. Phys. 14 252
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|