CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Room-temperature large photoinduced magnetoresistance in semi-insulating gallium arsenide-based device |
Xiong He(何雄), Zhi-Gang Sun(孙志刚) |
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract It is still a great challenge for semiconductor based-devices to obtain a large magnetoresistance (MR) effect under a low magnetic field at room temperature. In this paper, the photoinduced MR effects under different intensities of illumination at room temperature are investigated in a semi-insulating gallium arsenide (SI-GaAs)-based Ag/SI-GaAs/Ag device. The device is subjected to the irradiation of light which is supplied by light-emitting diode (LED) lamp beads with a wavelength in a range of about 395 nm-405 nm and the working power of each LED lamp bead is about 33 mW. The photoinduced MR shows no saturation under magnetic fields (B) up to 1 T and the MR sensitivity S (S=MR/B) at low magnetic field (B=0.001 T) can reach 15 T-1. It is found that the recombination of photoinduced electron and hole results in a positive photoinduced MR effect. This work implies that a high photoinduced S under a low magnetic field may be obtained in a non-magnetic semiconductor device with a very low intrinsic carrier concentration.
|
Received: 10 November 2017
Revised: 02 February 2018
Accepted manuscript online:
|
PACS:
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11574243 and 11174231). |
Corresponding Authors:
Zhi-Gang Sun
E-mail: sun_zg@whut.edu.cn
|
Cite this article:
Xiong He(何雄), Zhi-Gang Sun(孙志刚) Room-temperature large photoinduced magnetoresistance in semi-insulating gallium arsenide-based device 2018 Chin. Phys. B 27 067204
|
[1] |
Reig C, Cubells-Beltran M D and Munoz D R 2009 Sensors 9 7919
|
[2] |
Lenz J E 1990 Proc. IEEE 78 973
|
[3] |
Daughton J M 1999 J. Magn. Magn. Mater. 192 334
|
[4] |
Martins L, Ventura J, Ferreira R and Freitas P P 2017 Appl. Surf. Sci. 424 58
|
[5] |
Luo Z C, Zhang X Z, Xiong C Y and Chen J J 2015 Adv. Funct. Mater. 25 158
|
[6] |
Schoonus J J H M, Bloom F L, Wagemans W, Swagten H J M and Koopmans B 2008 Phys. Rev. Lett. 100 127202
|
[7] |
Delmo M P, Yamamoto S, Kasai S, Ono T and Kobayashi K 2009 Nature 457 1112
|
[8] |
Delmo M P, Shikoh E, Shinjo T and Shiraishi M 2013 Phys. Rev. B 87 245301
|
[9] |
He X, Sun Z G, Pang Y Y and Li Y C 2017 J. Appl. Phys. 121 114501
|
[10] |
Schoonus J J H M, Haazen P P J, Swagten H J M and Koopmans B 2009 J. Phys. D:Appl. Phys. 42 185011
|
[11] |
Wang T, Yang D Z, Si M S, Wang F C, Zhou S M and Xue D S 2016 Adv. Electron. Mater. 2 1600174
|
[12] |
Yang D Z, Wang T, Sui W B, Si M S, Guo D W, Shi Z, Wang F C and Xue D S 2015 Sci. Rep. 5 11096
|
[13] |
Wang T, Si M S, Yang D Z, Shi Z, Wang F C, Yang Z L, Zhou S M and Xue D S 2014 Nanoscale 6 3978
|
[14] |
Yang D Z, Wang F C, Ren Y, Zuo Y L, Peng Y, Zhou S M and Xue D S 2013 Adv. Funct. Mater. 23 2918
|
[15] |
Porter N A and Marrows C H 2012 Sci. Rep. 2 565
|
[16] |
Wan C H, Zhang X Z, Gao X L, Wang J M and Tan X Y 2011 Nature 477 304
|
[17] |
Chen J J, Piao H G, Luo Z C and Zhang X Z 2015 Appl. Phys. Lett. 106 173503
|
[18] |
Chen J J, Piao H G, Luo Z C, Xiong C Y and Zhang X Z 2016 Chin. Phys. Lett. 33 047501
|
[19] |
Chen J J, Zhang X Z, Luo Z C, Wang J M and Piao H G 2014 J. Appl. Phys. 116 114511
|
[20] |
Zhang K, Li H H, Grünberg P, Li Q, Ye S T, Tian Y F, Yan S S, Lin Z J, Kang S S, Chen Y X, Liu G L and Mei L M 2015 Sci. Rep. 5 14249
|
[21] |
Wang K F, Graf D, Li L J, Wang L M and Petrovic C 2015 Sci. Rep. 4 7328
|
[22] |
Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
|
[23] |
Velichko A V, Makarovsky O, Mori N, Eaves L, Krier A, Zhuang Q and Patané A 2014 Phys. Rev. B 90 085309
|
[24] |
Ahmad F R 2015 Appl. Phys. Lett. 106 012109
|
[25] |
Liu X Z, Yu G, Wei L M, Lin T, Xu Y G, Yang J R, Wei Y F, Guo S L, Chu J H, Rowell N L and Lockwood D J 2013 J. Appl. Phys. 113 013704
|
[26] |
Wang J M, Zhang X Z, Wan C H, Piao H G, Luo Z C and Xu S Y 2013 J. Appl. Phys. 114 034501
|
[27] |
Sun Z G, Mizuguchi M, Manago T and Akinaga H 2004 Appl. Phys. Lett. 85 5643
|
[28] |
Papadakis S J, Poortere E P D, Shayegan M and Winkler R 2000 Phys. Rev. Lett. 84 5592
|
[29] |
Tremblay F, Pepper M, Ritchie D, Peacock D C, Frost J E F and Jones G A C 1989 Phys. Rev. B 39 8059
|
[30] |
Halbo L and Sladek R J 1968 Phys. Rev. 173 794
|
[31] |
Shon Y, Yuldashev S U, Fan X, Fu D, Kwon Y H, Hong C Y and Kang T W 2001 Jpn. J. Appl. Phys. 40 3082
|
[32] |
Akinaga H, Mizuguchi M, Ono K and Oshima M 2000 Appl. Phys. Lett. 76 2600
|
[33] |
Yue Z J, Zhao K, Ni H, Zhao S Q, Kong Y C, Wong H K and Wang A J 2011 J. Phys. D:Appl. Phys. 44 095103
|
[34] |
Xi J F, Ni H, Zhao K, Lu H B, Guo E, He M, Jin K J, Zhou Y L, Yang G Z, Xiao L Z and Zhang Z W 2016 Appl. Phys. A 122 489
|
[35] |
Volkov N V, Tarasov A S, Eremin E V, Baron F A, Varnakov S N and Ovchinnikov S G 2013 J. Appl. Phys. 114 093903
|
[36] |
Wang S H, Wang W X, Zou L K, Zhang X, Cai J W, Sun Z G, Shen B G and Sun J R 2014 Adv. Mater. 26 8059
|
[37] |
Zhou J K, Wang T, Wang W, Chen S W, Cao Y, Liu H P, Si M S, Gao C X, Yang D Z and Xue D S 2016 Appl. Phys. Lett. 109 232404
|
[38] |
Sun Z G, Pang Y Y, Hu J H, He X and Li Y C 2016 Acta Phys. Sin. 65 097301 (in Chinese)
|
[39] |
Viana E R, Ribeiro G M, Oliveira A G d, Peres M L, Rubinger R M and Rubinger C P L 2012 Mater. Res. 15 530
|
[40] |
Yokoyama M, Ogawa T, Nazmul A M and Tanaka M 2006 J. Appl. Phys. 99 08D502
|
[41] |
Luo Z C and Zhang X Z 2015 J. Appl. Phys. 117 17A302
|
[42] |
Lee J, Joo S, Kim T, Kim K H, Rhie K, Hong J and Shin K H 2010 Appl. Phys. Lett. 97 253505
|
[43] |
Joo S, Kim T, Shin S H, Lim J Y, Hong J, Song J D, Chang J, Lee H W, Rhie K, Han S H, Shin K H and Johnson M 2013 Nature 494 72
|
[44] |
Casey H C, Miller B I and Pinkas E 1973 J. Appl. Phys. 44 1281
|
[45] |
He X and Sun Z G 2017 Mater. Rev. 31 6 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|