Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067204    DOI: 10.1088/1674-1056/27/6/067204

Room-temperature large photoinduced magnetoresistance in semi-insulating gallium arsenide-based device

Xiong He(何雄), Zhi-Gang Sun(孙志刚)
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Abstract  It is still a great challenge for semiconductor based-devices to obtain a large magnetoresistance (MR) effect under a low magnetic field at room temperature. In this paper, the photoinduced MR effects under different intensities of illumination at room temperature are investigated in a semi-insulating gallium arsenide (SI-GaAs)-based Ag/SI-GaAs/Ag device. The device is subjected to the irradiation of light which is supplied by light-emitting diode (LED) lamp beads with a wavelength in a range of about 395 nm-405 nm and the working power of each LED lamp bead is about 33 mW. The photoinduced MR shows no saturation under magnetic fields (B) up to 1 T and the MR sensitivity S (S=MR/B) at low magnetic field (B=0.001 T) can reach 15 T-1. It is found that the recombination of photoinduced electron and hole results in a positive photoinduced MR effect. This work implies that a high photoinduced S under a low magnetic field may be obtained in a non-magnetic semiconductor device with a very low intrinsic carrier concentration.
Keywords:  GaAs      magnetoresistance      carrier recombination  
Received:  10 November 2017      Revised:  02 February 2018      Accepted manuscript online: 
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11574243 and 11174231).
Corresponding Authors:  Zhi-Gang Sun     E-mail:

Cite this article: 

Xiong He(何雄), Zhi-Gang Sun(孙志刚) Room-temperature large photoinduced magnetoresistance in semi-insulating gallium arsenide-based device 2018 Chin. Phys. B 27 067204

[1] Reig C, Cubells-Beltran M D and Munoz D R 2009 Sensors 9 7919
[2] Lenz J E 1990 Proc. IEEE 78 973
[3] Daughton J M 1999 J. Magn. Magn. Mater. 192 334
[4] Martins L, Ventura J, Ferreira R and Freitas P P 2017 Appl. Surf. Sci. 424 58
[5] Luo Z C, Zhang X Z, Xiong C Y and Chen J J 2015 Adv. Funct. Mater. 25 158
[6] Schoonus J J H M, Bloom F L, Wagemans W, Swagten H J M and Koopmans B 2008 Phys. Rev. Lett. 100 127202
[7] Delmo M P, Yamamoto S, Kasai S, Ono T and Kobayashi K 2009 Nature 457 1112
[8] Delmo M P, Shikoh E, Shinjo T and Shiraishi M 2013 Phys. Rev. B 87 245301
[9] He X, Sun Z G, Pang Y Y and Li Y C 2017 J. Appl. Phys. 121 114501
[10] Schoonus J J H M, Haazen P P J, Swagten H J M and Koopmans B 2009 J. Phys. D:Appl. Phys. 42 185011
[11] Wang T, Yang D Z, Si M S, Wang F C, Zhou S M and Xue D S 2016 Adv. Electron. Mater. 2 1600174
[12] Yang D Z, Wang T, Sui W B, Si M S, Guo D W, Shi Z, Wang F C and Xue D S 2015 Sci. Rep. 5 11096
[13] Wang T, Si M S, Yang D Z, Shi Z, Wang F C, Yang Z L, Zhou S M and Xue D S 2014 Nanoscale 6 3978
[14] Yang D Z, Wang F C, Ren Y, Zuo Y L, Peng Y, Zhou S M and Xue D S 2013 Adv. Funct. Mater. 23 2918
[15] Porter N A and Marrows C H 2012 Sci. Rep. 2 565
[16] Wan C H, Zhang X Z, Gao X L, Wang J M and Tan X Y 2011 Nature 477 304
[17] Chen J J, Piao H G, Luo Z C and Zhang X Z 2015 Appl. Phys. Lett. 106 173503
[18] Chen J J, Piao H G, Luo Z C, Xiong C Y and Zhang X Z 2016 Chin. Phys. Lett. 33 047501
[19] Chen J J, Zhang X Z, Luo Z C, Wang J M and Piao H G 2014 J. Appl. Phys. 116 114511
[20] Zhang K, Li H H, Grünberg P, Li Q, Ye S T, Tian Y F, Yan S S, Lin Z J, Kang S S, Chen Y X, Liu G L and Mei L M 2015 Sci. Rep. 5 14249
[21] Wang K F, Graf D, Li L J, Wang L M and Petrovic C 2015 Sci. Rep. 4 7328
[22] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[23] Velichko A V, Makarovsky O, Mori N, Eaves L, Krier A, Zhuang Q and Patané A 2014 Phys. Rev. B 90 085309
[24] Ahmad F R 2015 Appl. Phys. Lett. 106 012109
[25] Liu X Z, Yu G, Wei L M, Lin T, Xu Y G, Yang J R, Wei Y F, Guo S L, Chu J H, Rowell N L and Lockwood D J 2013 J. Appl. Phys. 113 013704
[26] Wang J M, Zhang X Z, Wan C H, Piao H G, Luo Z C and Xu S Y 2013 J. Appl. Phys. 114 034501
[27] Sun Z G, Mizuguchi M, Manago T and Akinaga H 2004 Appl. Phys. Lett. 85 5643
[28] Papadakis S J, Poortere E P D, Shayegan M and Winkler R 2000 Phys. Rev. Lett. 84 5592
[29] Tremblay F, Pepper M, Ritchie D, Peacock D C, Frost J E F and Jones G A C 1989 Phys. Rev. B 39 8059
[30] Halbo L and Sladek R J 1968 Phys. Rev. 173 794
[31] Shon Y, Yuldashev S U, Fan X, Fu D, Kwon Y H, Hong C Y and Kang T W 2001 Jpn. J. Appl. Phys. 40 3082
[32] Akinaga H, Mizuguchi M, Ono K and Oshima M 2000 Appl. Phys. Lett. 76 2600
[33] Yue Z J, Zhao K, Ni H, Zhao S Q, Kong Y C, Wong H K and Wang A J 2011 J. Phys. D:Appl. Phys. 44 095103
[34] Xi J F, Ni H, Zhao K, Lu H B, Guo E, He M, Jin K J, Zhou Y L, Yang G Z, Xiao L Z and Zhang Z W 2016 Appl. Phys. A 122 489
[35] Volkov N V, Tarasov A S, Eremin E V, Baron F A, Varnakov S N and Ovchinnikov S G 2013 J. Appl. Phys. 114 093903
[36] Wang S H, Wang W X, Zou L K, Zhang X, Cai J W, Sun Z G, Shen B G and Sun J R 2014 Adv. Mater. 26 8059
[37] Zhou J K, Wang T, Wang W, Chen S W, Cao Y, Liu H P, Si M S, Gao C X, Yang D Z and Xue D S 2016 Appl. Phys. Lett. 109 232404
[38] Sun Z G, Pang Y Y, Hu J H, He X and Li Y C 2016 Acta Phys. Sin. 65 097301 (in Chinese)
[39] Viana E R, Ribeiro G M, Oliveira A G d, Peres M L, Rubinger R M and Rubinger C P L 2012 Mater. Res. 15 530
[40] Yokoyama M, Ogawa T, Nazmul A M and Tanaka M 2006 J. Appl. Phys. 99 08D502
[41] Luo Z C and Zhang X Z 2015 J. Appl. Phys. 117 17A302
[42] Lee J, Joo S, Kim T, Kim K H, Rhie K, Hong J and Shin K H 2010 Appl. Phys. Lett. 97 253505
[43] Joo S, Kim T, Shin S H, Lim J Y, Hong J, Song J D, Chang J, Lee H W, Rhie K, Han S H, Shin K H and Johnson M 2013 Nature 494 72
[44] Casey H C, Miller B I and Pinkas E 1973 J. Appl. Phys. 44 1281
[45] He X and Sun Z G 2017 Mater. Rev. 31 6 (in Chinese)
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[4] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[5] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[8] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[9] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[10] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[11] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
[12] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[13] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[14] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[15] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
No Suggested Reading articles found!