CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhanced photoresponse performance in Ga/Ga2O3 nanocomposite solar-blind ultraviolet photodetectors |
Shu-Juan Cui(崔书娟)1,2, Zeng-Xia Mei(梅增霞)1, Yao-Nan Hou(侯尧楠)1, Quan-Sheng Chen(陈全胜)1,2, Hui-Li Liang(梁会力)1, Yong-Hui Zhang(张永晖)1,2, Wen-Xing Huo(霍文星)1,2, Xiao-Long Du(杜小龙)1,2 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In the present work, we explore the solar-blind ultraviolet (UV) photodetectors (PDs) with enhanced photoresponse, fabricated on Ga/Ga2O3 nanocomposite films. Through pre-burying metal Ga layers and thermally post-annealing the laminated Ga2O3/Ga/Ga2O3 structures, Ga/Ga2O3 nanocomposite films incorporated with Ga nanospheres are obtained. For the prototype PD, it is found that the photocurrent and photoresponsivity will first increase and then decrease monotonically with the thickness of the pre-buried Ga layer increasing. Each of all PDs shows a spectrum response peak at 260 nm, demonstrating the ability to detect solar-blind UV light. Adjustable photoresponse enhancement factors are achieved by means of the surface plasmon in the nanocomposite films. The PD with a 20 nm thick Ga interlayer exhibits the best solar-blind UV photoresponse characteristics with an extremely low dark current of 8.52 pA at 10-V bias, a very high light-to-dark ratio of~8×105, a large photoresponsivity of 2.85 A/W at 15-V bias, and a maximum enhancement factor of~220. Our research provides a simple and practical route to high performance solar-blind UV PDs and potential applications in the field of optoelectronics.
|
Received: 09 February 2018
Revised: 06 March 2018
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
73.40.Sx
|
(Metal-semiconductor-metal structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11674405 and 11675280) and the Fund from the Laboratory of Microfabrication in Institute of Physics,Chinese Academy of Sciences. |
Corresponding Authors:
Zeng-Xia Mei, Xiao-Long Du
E-mail: zxmei@iphy.ac.cn;xldu@iphy.ac.cn
|
Cite this article:
Shu-Juan Cui(崔书娟), Zeng-Xia Mei(梅增霞), Yao-Nan Hou(侯尧楠), Quan-Sheng Chen(陈全胜), Hui-Li Liang(梁会力), Yong-Hui Zhang(张永晖), Wen-Xing Huo(霍文星), Xiao-Long Du(杜小龙) Enhanced photoresponse performance in Ga/Ga2O3 nanocomposite solar-blind ultraviolet photodetectors 2018 Chin. Phys. B 27 067301
|
[1] |
Li L, Lee P S, Yan C, Zhai T, Fang X, Liao M, Koide Y, Bando Y and Golberg D 2010 Adv. Mater. 22 5145
|
[2] |
Hou Y N, Mei Z X, Liu Z L, Zhang T C and Du X L 2011 Appl. Phys. Lett. 98 103506
|
[3] |
Liao M, Wang X, Teraji T, Koizumi S and Koide Y 2010 Phys. Rev. B 81 033304
|
[4] |
Mendoza F, Makarov V, Weiner B R and Morell G 2015 Appl. Phys. Lett. 107 201605
|
[5] |
Tut T, Yelboga T, Ulker E and Ozbay E 2008 Appl. Phys. Lett. 92 103502
|
[6] |
McClintock R, Yasan A, Minder K, Kung P and Razeghi M 2005 Appl. Phys. Lett. 87 241123
|
[7] |
Du X, Mei Z, Liu Z, Guo Y, Zhang T, Hou Y, Zhang Z, Xue Q and Kuznetsov A Y 2009 Adv. Mater. 21 4625
|
[8] |
Hou Y N, Mei Z X, Liang H L, Ye D Q, Liang S, Gu C Z and Du X L 2011 Appl. Phys. Lett. 98 263501
|
[9] |
Liang H L, Mei Z X, Zhang Q H, Gu L, Liang S, Hou Y N, Ye D Q, Gu C Z, Yu R C and Du X L 2011 Appl. Phys. Lett. 98 221902
|
[10] |
Chen X, Xu Y, Zhou D, Yang S, Ren F, Lu H, Tang K, Gu S, Zhang R, Zheng Y and Ye J 2017 ACS Appl. Mater. Interfaces 9 36997
|
[11] |
Suzuki R, Nakagomi S and Kokubun Y 2011 Appl. Phys. Lett. 98 131114
|
[12] |
Suzuki R, Nakagomi S, Kokubun Y, Arai N and Ohira S 2009 Appl. Phys. Lett. 94 222102
|
[13] |
Cui S J, Mei Z X, Zhang Y H, Liang H L and Du X L 2017 Adv. Opt. Mater. 5 1700454
|
[14] |
Singh Pratiyush A, Krishnamoorthy S, Vishnu Solanke S, Xia Z, Muralidharan R, Rajan S and Nath D N 2017 Appl. Phys. Lett. 110 221107
|
[15] |
Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd. 660 136
|
[16] |
Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I and Delaunay J J 2010 Adv. Funct. Mater. 20 3972
|
[17] |
Zou R, Zhang Z, Liu Q, Hu J, Sang L, Liao M and Zhang W 2014 Small 10 1848
|
[18] |
Orita M, Ohta H, Hirano M and Hosono H 2000 Appl. Phys. Lett. 77 4166
|
[19] |
Sang L, Liao M and Sumiya M 2013 Sensors 13 10482
|
[20] |
Du X, Li Z, Luan C, Wang W, Wang M, Feng X, Xiao H and Ma J 2015 J. Mater. Sci. 50 3252
|
[21] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[22] |
Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater. 9 193
|
[23] |
Li D B, Sun X J, Jia Y P, Stockman M I, Paudel H P, Song H, Jiang H and Li Z M 2017 Light Sci. Appl. 6 e17038
|
[24] |
Clavero C 2014 Nat. Photonics 8 95
|
[25] |
Chang C C, Sharma Y D, Kim Y S, Bur J A, Shenoi R V, Krishna S, Huang D and Lin S Y 2010 Nano Lett. 10 1704
|
[26] |
Tian C, Jiang D, Li B, Lin J, Zhao Y, Yuan W, Zhao J, Liang Q, Gao S, Hou J and Qin J 2014 ACS Appl. Mater. Interfaces 6 2162
|
[27] |
Li D, Sun X, Song H, Li Z, Chen Y, Jiang H and Miao G 2012 Adv. Mater. 24 845
|
[28] |
Zhang W, Xu J, Ye W, Li Y, Qi Z, Dai J, Wu Z, Chen C, Yin J, Li J, Jiang H and Fang Y 2015 Appl. Phys. Lett. 106 021112
|
[29] |
Gao H, Liu C, Jeong H E and Yang P 2012 ACS Nano 6 234
|
[30] |
Sharma B, Cardinal M F, Ross M B, Zrimsek A B, Bykov S V, Punihaole D, Asher S A, Schatz G C and Van Duyne R P 2016 Nano Lett. 16 7968
|
[31] |
Losurdo M, Yi C, Suvorova A, Rubanov S, Kim T H, Giangregorio M M, Jiao W, Bergmair I, Bruno G and Brown A S 2014 ACS Nano 8 3031
|
[32] |
Catalán-Gómez S, Redondo-Cubero A, Palomares F J, Nucciarelli F and Pau J L 2017 Nanotechnology 28 405705
|
[33] |
Yang Y, Callahan J M, Kim T H, Brown A S and Everitt H O 2013 Nano Lett. 13 2837
|
[34] |
Cui S J, Mei Z X, Hou Y N, Sun M H, Chen Q S, Liang H L, Zhang Y H, Bai X D and Du X L 2018 Sci. China-Phys. Mech. Astron. 61 107021
|
[35] |
Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater. 28 10725
|
[36] |
Zhong M, Wei Z, Meng X, Wu F and Li J 2015 J. Alloys Compd. 619 572
|
[37] |
Yu F P, Ou S L and Wuu D S 2015 Opt. Mater. Express 5 1240
|
[38] |
Weng W Y, Hsueh T J, Chang S J, Huang G J and Hsueh H T 2011 IEEE Sens. J. 11 999
|
[39] |
Zhao C, Zhu Y, Su Y, Guan Z, Chen A, Ji X, Gui X, Xiang R and Tang Z 2015 Adv. Opt. Mater. 3 248
|
[40] |
Langhammer C, Schwind M, Kasemo B and Zorić I 2008 Nano Lett. 8 1461
|
[41] |
Bao G, Li D, Sun X, Jiang M, Li Z, Song H, Jiang H, Chen Y, Miao G and Zhang Z 2014 Opt. Express 22 24286
|
[42] |
Fang J, Yi Y, Ding B and Song X 2008 Appl. Phys. Lett. 92 131115
|
[43] |
Tira C, Tira D, Simon T and Astilean S 2014 J. Mol. Struct. 1072 137
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|