Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 066201    DOI: 10.1088/1674-1056/27/6/066201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Pressure-induced enhancement of optoelectronic properties in PtS2

Yi-Fang Yuan(袁亦方)1,2, Zhi-Tao Zhang(张志涛)2, Wei-Ke Wang(王伟科)3, Yong-Hui Zhou(周永惠)2, Xu-Liang Chen(陈绪亮)2, Chao An(安超)2, Ran-Ran Zhang(张冉冉)2, Ying Zhou(周颖)2, Chuan-Chuan Gu(顾川川)2, Liang Li(李亮)4, Xin-Jian Li(李新建)1, Zhao-Rong Yang(杨昭荣)2,5
1 Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China;
2 Anhui Provincial Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
3 Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081, China;
4 State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology(HUST), Wuhan 430074, China;
5 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Abstract  

PtS2, which is one of the group-10 transition metal dichalcogenides, attracts increasing attention due to its extraordinary properties under external modulations as predicted by theory, such as tunable bandgap and indirect-to-direct gap transition under strain; however, these properties have not been verified experimentally. Here we report the first experimental exploration of its optoelectronic properties under external pressure. We find that the photocurrent is weakly pressure-dependent below 3 GPa but increases significantly in the pressure range of 3 GPa-4 GPa, with a maximum~6 times higher than that at ambient pressure. X-ray diffraction data shows that no structural phase transition can be observed up to 26.8 GPa, which indicates a stable lattice structure of PtS2 under high pressure. This is further supported by our Raman measurements with an observation of linear blue-shifts of the two Raman-active modes to 6.4 GPa. The pressure-enhanced photocurrent is related to the indirect-to-direct/quasi-direct bandgap transition under pressure, resembling the gap behavior under compression strain as predicted theoretically.

Keywords:  high pressure      optoelectronic properties      transition metal disulfide  
Received:  04 March 2018      Revised:  14 April 2018      Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  85.60.-q (Optoelectronic devices)  
  32.30.Rj (X-ray spectra)  
  74.25.nd (Raman and optical spectroscopy)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos.2018YFA0305700 and 2016YFA0401804),the National Natural Science Foundation of China (Grant Nos.11574323,11704387,U1632275,11304321,11604340,and 61774136),the Natural Science Foundation of Anhui Province,China (Grant No.1708085QA19),and the Director's Fund of Hefei Institutes of Physical Science,Chinese Academy of Sciences (Grant No.YZJJ201621).

Corresponding Authors:  Xin-Jian Li, Zhao-Rong Yang     E-mail:  lixj@zzu.edu.cn;zryang@issp.ac.cn

Cite this article: 

Yi-Fang Yuan(袁亦方), Zhi-Tao Zhang(张志涛), Wei-Ke Wang(王伟科), Yong-Hui Zhou(周永惠), Xu-Liang Chen(陈绪亮), Chao An(安超), Ran-Ran Zhang(张冉冉), Ying Zhou(周颖), Chuan-Chuan Gu(顾川川), Liang Li(李亮), Xin-Jian Li(李新建), Zhao-Rong Yang(杨昭荣) Pressure-induced enhancement of optoelectronic properties in PtS2 2018 Chin. Phys. B 27 066201

[1] Mak K F and Shan J 2016 Nat. Photon. 10 216
[2] Li L K, Kim j, Jin C H, Ye G J, Qiu D Y, da Jornada F H, Shi Z W, Chen L, Zhang Z C, Yang F Y, Watanabe K, Taniguchi T, Ren W C, Louie S G, Chen X H, Zhang Y B and Wang F 2016 Nat. Nanotechnol. 12 21
[3] Joshua O I, Gary A S, Herre S J v d Z and Andres C G 2015 2D Mater. 2 011002
[4] Bao W Z, Cai X H, Kim D, Sridhara K and Fuhrer M S 2013 Appl. Phys. Lett. 102 042104
[5] Huang Z S, Zhang W X and Zhang W L 2016 Materials 9 716
[6] Zhao Y D, Qiao J S, Yu P, Hu Z X, Lin Z Y, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399
[7] Wang W K, Li L, Zhang Z T, Yang J Y, Tang D S and Zhai T Y 2017 Appl. Phys. Lett. 111 203504
[8] Mak K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[9] Li L, Wang W K, Chai Y, Li H Q, Tian M L and Zhai T Y 2017 Adv. Funct. Mater. 1701011
[10] Zhang Y, ChangT R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A and Shen Z X 2013 Nat. Nanotechnol. 9 111
[11] Friend R H and Yoffe A D 1987 Adv. Phys. 36 1
[12] Benavente E, Santa Ana M A, Mendizábal F and González G 2002 Coord. Chem. Rev. 224 87
[13] Mann J, Ma Q, Odenthal P M, Isarraraz M, Le D, Preciado E, Barroso D, Yamaguchi K, von Son Palacio G, Nguyen A, Tran T, Wurch M, Nguyen A, Klee V, Bobek S, Sun D, Heinz T F, Rahman T S, Kawakami R and Bartels L 2014 Adv. Mater. 26 1399
[14] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[15] Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
[16] Miró P, Ghorbani-Asl M and Heine T 2014 Angew. Chem. Int. Ed. 53 3015
[17] Zhao Z, Zhang H J, Yuan H T, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y and Mao W L 2015 Nat. Commun. 6 7312
[18] Ramasubramaniam A, Naveh D and Towe E 2011 Phys. Rev. B 84 205325
[19] Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D and Lin J F 2014 Nat. Commun. 5 3731
[20] Wang X F, Chen X L, Zhou Y H, Park C Y, An C, Zhou Y, Zhang R R, Gu C C, Yang W G and Yang Z R 2017 Sci. Rep. 7 46694
[21] Zhou D W, Zhou Y H, Pu C Y, Chen X L, Lu P C, Wang X F, An C, Zhou Y, Miao F, Ho C H, Sun J, Yang Z R, Xing D Y 2017 npj Quantum Materials 2
[22] Park C Y, Popov D, Ikuta D, Lin C L, Kenney-Benson C, Rod E, Bommannavar A and Shen G Y 2015 Rev. Sci. Instrum. 86 072205
[23] Prescher C and Prakapenka V B 2015 High Pressure Research 35 223
[24] Hunter B A 1998 Rietica-A Visual Rietveld Program, International Union of Crystallography Commission on Powder Diffraction Newsletter No. 20 (Summer 1998) http://www.rietica.org
[25] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res.-Sol. Ea. 91 4673
[26] Wang Y G, Lü X J, Yang W G, Wen T, Yang L X, Ren X T, Wang L, Lin Z S and Zhao Y S 2015 J. Am. Chem. Soc. 137 11144
[27] Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G and Jia Q X 2016 Adv. Mater. 28 8663
[28] Zhang G H, Liu F L, Gu T T, Zhao Y S, Li N N, Yang W G and Feng S H 2017 Adv. Electron. Mater. 3 1600498
[29] Furuseth S, Selte K and Kjekshus A 1965 Acta Chem. Scand. 19 257
[30] Birch F 1947 Phys. Rev. 71 809
[31] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[32] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[3] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[4] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[5] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[6] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[7] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[8] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[9] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[12] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[13] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[14] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[15] Pressure-induced novel structure with graphene-like boron-layer in titanium monoboride
Yuan-Yuan Jin(金园园), Jin-Quan Zhang(张金权), Shan Ling(凌山), Yan-Qi Wang(王妍琪), Song Li(李松), Fang-Guang Kuang(匡芳光), Zhi-Yan Wu(武志燕), and Chuan-Zhao Zhang(张传钊). Chin. Phys. B, 2022, 31(11): 116104.
No Suggested Reading articles found!