CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Pressure-induced enhancement of optoelectronic properties in PtS2 |
Yi-Fang Yuan(袁亦方)1,2, Zhi-Tao Zhang(张志涛)2, Wei-Ke Wang(王伟科)3, Yong-Hui Zhou(周永惠)2, Xu-Liang Chen(陈绪亮)2, Chao An(安超)2, Ran-Ran Zhang(张冉冉)2, Ying Zhou(周颖)2, Chuan-Chuan Gu(顾川川)2, Liang Li(李亮)4, Xin-Jian Li(李新建)1, Zhao-Rong Yang(杨昭荣)2,5 |
1 Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China;
2 Anhui Provincial Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
3 Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha 410081, China;
4 State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology(HUST), Wuhan 430074, China;
5 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China |
|
|
Abstract PtS2, which is one of the group-10 transition metal dichalcogenides, attracts increasing attention due to its extraordinary properties under external modulations as predicted by theory, such as tunable bandgap and indirect-to-direct gap transition under strain; however, these properties have not been verified experimentally. Here we report the first experimental exploration of its optoelectronic properties under external pressure. We find that the photocurrent is weakly pressure-dependent below 3 GPa but increases significantly in the pressure range of 3 GPa-4 GPa, with a maximum~6 times higher than that at ambient pressure. X-ray diffraction data shows that no structural phase transition can be observed up to 26.8 GPa, which indicates a stable lattice structure of PtS2 under high pressure. This is further supported by our Raman measurements with an observation of linear blue-shifts of the two Raman-active modes to 6.4 GPa. The pressure-enhanced photocurrent is related to the indirect-to-direct/quasi-direct bandgap transition under pressure, resembling the gap behavior under compression strain as predicted theoretically.
|
Received: 04 March 2018
Revised: 14 April 2018
Accepted manuscript online:
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
85.60.-q
|
(Optoelectronic devices)
|
|
32.30.Rj
|
(X-ray spectra)
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos.2018YFA0305700 and 2016YFA0401804),the National Natural Science Foundation of China (Grant Nos.11574323,11704387,U1632275,11304321,11604340,and 61774136),the Natural Science Foundation of Anhui Province,China (Grant No.1708085QA19),and the Director's Fund of Hefei Institutes of Physical Science,Chinese Academy of Sciences (Grant No.YZJJ201621). |
Corresponding Authors:
Xin-Jian Li, Zhao-Rong Yang
E-mail: lixj@zzu.edu.cn;zryang@issp.ac.cn
|
Cite this article:
Yi-Fang Yuan(袁亦方), Zhi-Tao Zhang(张志涛), Wei-Ke Wang(王伟科), Yong-Hui Zhou(周永惠), Xu-Liang Chen(陈绪亮), Chao An(安超), Ran-Ran Zhang(张冉冉), Ying Zhou(周颖), Chuan-Chuan Gu(顾川川), Liang Li(李亮), Xin-Jian Li(李新建), Zhao-Rong Yang(杨昭荣) Pressure-induced enhancement of optoelectronic properties in PtS2 2018 Chin. Phys. B 27 066201
|
[1] |
Mak K F and Shan J 2016 Nat. Photon. 10 216
|
[2] |
Li L K, Kim j, Jin C H, Ye G J, Qiu D Y, da Jornada F H, Shi Z W, Chen L, Zhang Z C, Yang F Y, Watanabe K, Taniguchi T, Ren W C, Louie S G, Chen X H, Zhang Y B and Wang F 2016 Nat. Nanotechnol. 12 21
|
[3] |
Joshua O I, Gary A S, Herre S J v d Z and Andres C G 2015 2D Mater. 2 011002
|
[4] |
Bao W Z, Cai X H, Kim D, Sridhara K and Fuhrer M S 2013 Appl. Phys. Lett. 102 042104
|
[5] |
Huang Z S, Zhang W X and Zhang W L 2016 Materials 9 716
|
[6] |
Zhao Y D, Qiao J S, Yu P, Hu Z X, Lin Z Y, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399
|
[7] |
Wang W K, Li L, Zhang Z T, Yang J Y, Tang D S and Zhai T Y 2017 Appl. Phys. Lett. 111 203504
|
[8] |
Mak K F, Lee C G, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[9] |
Li L, Wang W K, Chai Y, Li H Q, Tian M L and Zhai T Y 2017 Adv. Funct. Mater. 1701011
|
[10] |
Zhang Y, ChangT R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A and Shen Z X 2013 Nat. Nanotechnol. 9 111
|
[11] |
Friend R H and Yoffe A D 1987 Adv. Phys. 36 1
|
[12] |
Benavente E, Santa Ana M A, Mendizábal F and González G 2002 Coord. Chem. Rev. 224 87
|
[13] |
Mann J, Ma Q, Odenthal P M, Isarraraz M, Le D, Preciado E, Barroso D, Yamaguchi K, von Son Palacio G, Nguyen A, Tran T, Wurch M, Nguyen A, Klee V, Bobek S, Sun D, Heinz T F, Rahman T S, Kawakami R and Bartels L 2014 Adv. Mater. 26 1399
|
[14] |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
|
[15] |
Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
|
[16] |
Miró P, Ghorbani-Asl M and Heine T 2014 Angew. Chem. Int. Ed. 53 3015
|
[17] |
Zhao Z, Zhang H J, Yuan H T, Wang S B, Lin Y, Zeng Q S, Xu G, Liu Z X, Solanki G K, Patel K D, Cui Y, Hwang H Y and Mao W L 2015 Nat. Commun. 6 7312
|
[18] |
Ramasubramaniam A, Naveh D and Towe E 2011 Phys. Rev. B 84 205325
|
[19] |
Nayak A P, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C Q, Singh A K, Akinwande D and Lin J F 2014 Nat. Commun. 5 3731
|
[20] |
Wang X F, Chen X L, Zhou Y H, Park C Y, An C, Zhou Y, Zhang R R, Gu C C, Yang W G and Yang Z R 2017 Sci. Rep. 7 46694
|
[21] |
Zhou D W, Zhou Y H, Pu C Y, Chen X L, Lu P C, Wang X F, An C, Zhou Y, Miao F, Ho C H, Sun J, Yang Z R, Xing D Y 2017 npj Quantum Materials 2
|
[22] |
Park C Y, Popov D, Ikuta D, Lin C L, Kenney-Benson C, Rod E, Bommannavar A and Shen G Y 2015 Rev. Sci. Instrum. 86 072205
|
[23] |
Prescher C and Prakapenka V B 2015 High Pressure Research 35 223
|
[24] |
Hunter B A 1998 Rietica-A Visual Rietveld Program, International Union of Crystallography Commission on Powder Diffraction Newsletter No. 20 (Summer 1998) http://www.rietica.org
|
[25] |
Mao H K, Xu J and Bell P M 1986 J. Geophys. Res.-Sol. Ea. 91 4673
|
[26] |
Wang Y G, Lü X J, Yang W G, Wen T, Yang L X, Ren X T, Wang L, Lin Z S and Zhao Y S 2015 J. Am. Chem. Soc. 137 11144
|
[27] |
Lü X J, Wang Y G, Stoumpos C C, Hu Q Y, Guo X F, Chen H J, Yang L X, Smith J S, Yang W G, Zhao Y S, Xu H W, Kanatzidis M G and Jia Q X 2016 Adv. Mater. 28 8663
|
[28] |
Zhang G H, Liu F L, Gu T T, Zhao Y S, Li N N, Yang W G and Feng S H 2017 Adv. Electron. Mater. 3 1600498
|
[29] |
Furuseth S, Selte K and Kjekshus A 1965 Acta Chem. Scand. 19 257
|
[30] |
Birch F 1947 Phys. Rev. 71 809
|
[31] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[32] |
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|