Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 066103    DOI: 10.1088/1674-1056/27/6/066103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage

Cheng Zhang(张诚)1,2, Shaolong Tang(唐少龙)2, Mingsen Deng(邓明森)3, Youwei Du(都有为)2
1 School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China;
2 Department of Physics, Nanjing University, Nanjing 210093, China;
3 Guizhou Provincial Key Laboratory of Computational Nano-material Science, Guizhou Education University, Guiyang 550018, China
Abstract  Based on the first-principles plane wave calculations, we show that Li adsorbed on monolayer and bilayer MoS2 forming a uniform and stable coverage can serve as a high-capacity hydrogen storage medium, and Li-coated MoS2 can be recycled by operations at room temperature due to Li having strength binding, big separation and is stable against clustering. The full Li coverage MoS2 system (2*2 hexagonal MoS2 supercell) can reach up to eight H2 molecules on every side, corresponding to the gravimetric density of hydrogen storage up to 4.8 wt% and 2.5 wt% in monolayer and bilayer MoS2, respectively. The adsorption energies of hydrogen molecules are in the range of 0.10eV/H2-0.25 eV/H2, which are acceptable for reversible H2 adsorption/desorption near ambient temperature. In addition, compared with light metals decorated low dimension carbon-based materials, the sandwiched structure of MoS2 exhibits the greatly enhanced binding stability of Li atoms as well as slightly decreased Li-Li interaction and thus avoids the problem of metal clustering. It is interesting to note that the Li atom apart from the electrostatic interaction, acts as a bridge of hybridization between the S atoms of MoS2 and adsorbed H2 molecules. The encouraging results show that such light metals decorated with MoS2 have great potential in developing high performance hydrogen storage materials.
Keywords:  MoS2      Li anchoring      hydrogen storage      first-principles  
Received:  16 January 2018      Revised:  02 March 2018      Accepted manuscript online: 
PACS:  61.46.-w (Structure of nanoscale materials)  
  63.20.dk (First-principles theory)  
  88.30.R- (Hydrogen storage)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No.2012CB932304),the National Natural Science Foundation of China (Grant No.21763007),the Innovation Team Foundation of the Education Department of Guizhou Province,China (Grant No.[2014]35),and the Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province,China (Grant No.[2016]002).
Corresponding Authors:  Shaolong Tang, Mingsen Deng     E-mail:  tangsl@nju.edu.cn;deng@gznc.edu.cn

Cite this article: 

Cheng Zhang(张诚), Shaolong Tang(唐少龙), Mingsen Deng(邓明森), Youwei Du(都有为) Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage 2018 Chin. Phys. B 27 066103

[1] Schlapbach L and Zuttel A 2001 Nature 414 353
[2] Rogner H H 1998 Int. J. Hydrogen Energy 23 833
[3] Ataca C, Akturk E and Ciraci S 2009 Phys. Rev. B 79 041406
[4] Wu J, Ong S M, Kang H C and Tok E S 2010 J. Phys. Chem. C 114 21252
[5] Zhang C, Deng M S and Cai S H 2017 Acta Phys. Sin. 66 128201 (in Chinese)
[6] Lee H, Ihm J, Cohen M L and Louie S G 2009 Phys. Rev. B 80 115412
[7] Zhang Z, Zheng W and Jiang Q 2011 Phys. Chem. Chem. Phys. 13 9483
[8] Yoon M, Yang S, Hicke C, Wang E, Geohegan D B and Zhang Z 2008 Phys. Rev. Lett. 100 206806
[9] Huang L, Liu Y C, Gubbins K E and Nardelli M B 2010 Appl. Phys. Lett. 96 063111
[10] Li M, Li J, Sun Q and Jia Y 2010 J. Appl. Phys. 108 064326
[11] Zhao Y Q, Liu B, Yu Z L, Ma J, Wan Q, He P B and Cai M Q 2017 J. Mater. Chem. C 5 5356
[12] Ley M B, Jepsen L H, Lee Y J, Cho Y W, Colbe J M V, Dornheim M, Rokni M, Jensen J O, Sloth M, Filinchuk Y, Jorgensen J E, Besenbacher F and Jensen T R 2014 Mater. Today 17 122
[13] Cai M Q, Du Y and Huang B Y 2011 Appl. Phys. Lett. 98 102907
[14] Durgun E, Ciraci S, Zhou W and Yildirim Y 2006 Phys. Rev. Lett. 97 226102
[15] Cao D, Cai M Q, Hu W Y, Peng J, Zheng Y and Huang H T 2011 Appl. Phys. Lett. 98 031910
[16] Cai M Q, Zheng Y, Wang B and Yang G W 2009 Appl. Phys. Lett. 95 232901
[17] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[18] Ataca C, Akturk E, Ciraci S and Ustunel H 2008 Appl. Phys. Lett. 93 043123
[19] Havu P, Ijäs M and Harju A 2011 Phys. Rev. B 84 205423
[20] Sun Q, Wang Q, Jena P and Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582
[21] Liu W, Zhao Y, Li Y, Jiang Q and Lavernia E J 2009 J. Phys. Chem. C 113 2028
[22] Zhang C, Geng X P, Tang S L, Deng M S and Du Y W 2017 J. Mater. Chem. A 5 5912
[23] Zhang C, Lei C L, Cen C, Tang S L, Deng M S and Du Y W 2018 Electrochim. Acta 260 814
[24] Meng S, Kaxiras E and Zhang Z 2007 Nano Lett. 7 663
[25] Zhou C, Szpunar J A and Cui X 2016 ACS Appl. Mater. Interfaces 8 15232
[26] Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q and Zhang H 2012 Small 8 63
[27] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[28] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
[29] Liu B, Wu L J, Zhao Y Q, Wang L Z and Cai M Q 2016 J. Magn. Magn. Mater. 420 218
[30] Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Cai M Q and Yu H L 2018 Org. Electron 53 50
[31] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Blochl P E 1994 Phys. Rev. B 50 17953
[34] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[35] Kadantsev E S and Hawrylak P 2012 Solid State Commun. 152 909
[36] Liu C, Li F, Ma L P and Cheng H M 2010 Adv. Mater. 22 E28
[37] Liu C, Fan Y Y, Liu M, Cong H T, Cheng H and Dresselhaus M S 1999 Science 286 1127
[38] Putungan D B, Lin S, Wei C and Kuo J 2015 Phys. Chem. Chem. Phys. 17 11367
[39] Suh M P, Park H J, Prasad T K and Lim D 2009 Chem. Soc. Rev. 38 1294
[40] Chan K T, Neaton J B and Cohen M L 2008 Phys. Rev. B 77 235430
[41] Wu X, Yang J and Zeng X C 2006 J. Chem. Phys. 125 44704
[42] Lee H, Ihm J, Cohen M L and Louie S G 2010 Nano Lett. 10 793
[43] Zhang C, Wei J, Chen L, Tang S L, Deng M S and Du Y W 2017 Nanoscale 9 15423
[44] Zhang C, Huang Y, Tang S L, Deng M S and Du Y W 2017 ACS Energy Lett. 2 759
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[8] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[11] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[12] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[13] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[14] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[15] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
No Suggested Reading articles found!