CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of O-O bonds on p-type conductivity in Ag-doped ZnO twin grain boundaries |
Jingjing Wu(吴静静)1,2, Xin Tang(唐鑫)1,2, Fei Long(龙飞)1,2, Biyu Tang(唐壁玉)3 |
1 Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China; 2 College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China; 3 School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China |
|
|
Abstract Based on density functional theory, first-principles calculation is applied to study the electronic properties of undoped and Ag-doped ZnO-Σ7 (1230) twin grain boundaries (GBs). The calculated result indicates that the twin GBs can facilitate the formation and aggregation of Ag substitution at Zn sites (AgZn) due to the strain release. Meanwhile, some twin GBs can also lower the ionization energy of AgZn. The density of state shows that the O-O bonds in GBs play a key role in the formation of a shallow acceptor energy level. When AgZn bonds with one O atom in the O-O bond, the antibonding state of the O-O bond becomes partially occupied. As a result, a weak spin splitting occurs in the antibonding state, which causes a shallow empty energy level above the valence band maximum. Further, the model can be applied to explain the origin of p-type conductivity in Ag-doped ZnO.
|
Received: 26 November 2017
Revised: 23 February 2018
Accepted manuscript online:
|
PACS:
|
77.55.hf
|
(ZnO)
|
|
61.72.Mm
|
(Grain and twin boundaries)
|
|
63.20.dk
|
(First-principles theory)
|
|
71.70.Ch
|
(Crystal and ligand fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11364009) and Natural Science Foundation of Guangxi Province,China (Grant No.2014GXNSFFA118004). |
Corresponding Authors:
Xin Tang
E-mail: xtang@glut.edu.cn
|
Cite this article:
Jingjing Wu(吴静静), Xin Tang(唐鑫), Fei Long(龙飞), Biyu Tang(唐壁玉) Effect of O-O bonds on p-type conductivity in Ag-doped ZnO twin grain boundaries 2018 Chin. Phys. B 27 057701
|
[1] |
Tahir N, Karim A, Persson K A, Hussain S T, Cruz A G, Usman M, Naeem M, Qiao R, Yang W, Chuang Y D and Hussain Z 2013 J. Phys. Chem. C 117 8968
|
[2] |
Sato Y, Mizoguchi F O, Yodogawa T Y and Ikuhara Y 2005 J. Mater. Sci. 40 3059
|
[3] |
Janotti A and Van de Walle C G 2007 Phys. Rev. B 76 165202
|
[4] |
Hosseini S M, Sarsari I A, Kameli P and Salamati H 2015 J. Alloys Compd. 640 408
|
[5] |
Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J and Morkoç H 2005 J. Appl. Phys. 98 041301
|
[6] |
Zhang S B, Wei S H and Zunger A 1998 J. Appl. Phys. 83 3192
|
[7] |
Suja M, Bashar S B, Morshed M M and Liu J 2015 ACS Applied materials & interfaces 7 8894
|
[8] |
Kim Y, Choe J, Nam G, Kim I, Leem J Y, Lee S H, Kim S, Kim D Y and Kim S O 2015 J. Korean Phys. Soc. 66 224
|
[9] |
Jiang N, Roehl J L, Khare S V, Georgiev D G and Jayatissa A H 2014 Thin Solid Films 564 331
|
[10] |
Huang X, Chen R, Zhang C, Chai J, Wang S, Chi D and Chua S J 2016 Adv. Opt. Mater 4 960
|
[11] |
Abinaya C, Marikkannan M, Manikandan M, Mayandi J, Suresh P, Shanmugaiah V, Ekstrum C and Pearce J M 2016 Mater. Chem. Phys. 184 172
|
[12] |
Yan Y, Al-Jassim M M and Wei S H 2006 Appl. Phys. Lett. 89 181912
|
[13] |
Ying Z C, Jing W and Lei B Y 2010 Chin. Phys. B 19 047101
|
[14] |
Xu S S, Lu H L, Zhang Y, Wang T, Geng Y, Huang W, Ding S J and Zhang D W 2015 J. Alloys Compd. 638 133
|
[15] |
McCluskey M D, Corolewski C D, Lv J, Tarun M C, Teklemichael S T, Walter E D, Norton M G, Harrison K W and Ha S 2015 J. Appl. Phys. 117 112802
|
[16] |
Azarov A, Vines L, Rauwel P, Monakhov E and Svensson B G 2016 J. Appl. Phys. 119 185705
|
[17] |
Xu Z and Hou Q 2015 Acta Phys. Sin. 64 157101(in Chinese)
|
[18] |
Chen X M, Ji Y, Gao X Y and Zhao X W 2012 Chin. Phys. B 21 116801
|
[19] |
Wan Q, Xiong Z, Dai J, Rao J and Jiang F 2008 Opt. Mater. 30 817
|
[20] |
Ul Haq B, Ahmed R, Shaari A and Goumri-Said S 2014 J. Magn. Magn. Mater. 362 104
|
[21] |
Fan J and Freer R 1995 J. Appl. Phys. 77 4795
|
[22] |
Myers M A, Joon Hwan L, Zhenxing B and Haiyan M 2012 J. Phys.:Condens. Matter 24 229501
|
[23] |
Myers M A, Khranovskyy V, Jian J, Lee J H, Wang H and Wang H 2015 J. Appl. Phys. 118 065702
|
[24] |
Li J C, Cao Q and Hou X Y 2013 J. Appl. Phys. 113 203518
|
[25] |
Khosravi-Gandomani S, Yousefi R, Jamali-Sheini F and Huang N M 2014 Ceram. Int. 40 7957
|
[26] |
Körner W, Bristowe P D and Elsässer C 2011 Phys. Rev. B 84 045305
|
[27] |
Sato Y, Yamamoto T and Ikuhara Y 2007 J. Am. Ceram. Soc. 90 337
|
[28] |
Li Y H, Xia Q, Guo S K, Ma Z Q, Gao Y B, Gong X G and Wei S H 2015 J. Appl. Phys. 118 045708
|
[29] |
Erhart P, Klein A and Albe K 2005 Phys. Rev. B 72 085213
|
[30] |
Agapito L A, Curtarolo S and Buongiorno Nardelli M 2015 Phys. Rev. X 5 011006
|
[31] |
Wu J, Tang X, Long F and Tang B 2017 Acta Phys. Sin. 66 137101(in Chinese)
|
[32] |
Hou Q Y, Wu Y and Zhao C W 2014 Acta Phys. Sin. 63 137201(in Chinese)
|
[33] |
Limpijumnong S, Li X, Wei S H and Zhang S B 2005 Appl. Phys. Lett. 86 211910
|
[34] |
Lathiotakis N N andriotis A N and Menon M 2008 Phys. Rev. B 78 193311
|
[35] |
Guo T, Dong G, Chen Q, Gao F and Diao X 2014 J. Supercond. Nov. Magn. 27 835
|
[36] |
Huang B 2016 Solid State Commun. 237-23834
|
[37] |
Lide D R 2014 CRC Handbook of Chemistry and Physics 95th ed. (New York:CRC Press)
|
[38] |
Li H, Schirra L K, Shim J, Cheun H, Kippelen B, Monti O L A and Bredas J L 2012 Chem. Mater. 24 3044
|
[39] |
Long S, Li Y, Yao B, Ding Z, Xu Y, Yang G, Deng R, Xiao Z, Zhao D, Zhang Z, Zhang L and Zhao H 2016 Thin Solid Films 600 13
|
[40] |
Shih B C, Zhang Y, Zhang W and Zhang P 2012 Phys. Rev. B 85 045132
|
[41] |
Kumar R, Singh F, Angadi B, Choi J W, Choi W K, Jeong K, Song J H, Khan M W, Srivastava J P, Kumar A and Tandon R P 2006 J. Appl. Phys. 100 113708
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|