Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 057701    DOI: 10.1088/1674-1056/27/5/057701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of O-O bonds on p-type conductivity in Ag-doped ZnO twin grain boundaries

Jingjing Wu(吴静静)1,2, Xin Tang(唐鑫)1,2, Fei Long(龙飞)1,2, Biyu Tang(唐壁玉)3
1 Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China;
2 College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China;
3 School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
Abstract  Based on density functional theory, first-principles calculation is applied to study the electronic properties of undoped and Ag-doped ZnO-Σ7 (1230) twin grain boundaries (GBs). The calculated result indicates that the twin GBs can facilitate the formation and aggregation of Ag substitution at Zn sites (AgZn) due to the strain release. Meanwhile, some twin GBs can also lower the ionization energy of AgZn. The density of state shows that the O-O bonds in GBs play a key role in the formation of a shallow acceptor energy level. When AgZn bonds with one O atom in the O-O bond, the antibonding state of the O-O bond becomes partially occupied. As a result, a weak spin splitting occurs in the antibonding state, which causes a shallow empty energy level above the valence band maximum. Further, the model can be applied to explain the origin of p-type conductivity in Ag-doped ZnO.
Keywords:  ZnO      twin grain boundary      first-principles calculation      ligand field theory  
Received:  26 November 2017      Revised:  23 February 2018      Accepted manuscript online: 
PACS:  77.55.hf (ZnO)  
  61.72.Mm (Grain and twin boundaries)  
  63.20.dk (First-principles theory)  
  71.70.Ch (Crystal and ligand fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11364009) and Natural Science Foundation of Guangxi Province,China (Grant No.2014GXNSFFA118004).
Corresponding Authors:  Xin Tang     E-mail:  xtang@glut.edu.cn

Cite this article: 

Jingjing Wu(吴静静), Xin Tang(唐鑫), Fei Long(龙飞), Biyu Tang(唐壁玉) Effect of O-O bonds on p-type conductivity in Ag-doped ZnO twin grain boundaries 2018 Chin. Phys. B 27 057701

[1] Tahir N, Karim A, Persson K A, Hussain S T, Cruz A G, Usman M, Naeem M, Qiao R, Yang W, Chuang Y D and Hussain Z 2013 J. Phys. Chem. C 117 8968
[2] Sato Y, Mizoguchi F O, Yodogawa T Y and Ikuhara Y 2005 J. Mater. Sci. 40 3059
[3] Janotti A and Van de Walle C G 2007 Phys. Rev. B 76 165202
[4] Hosseini S M, Sarsari I A, Kameli P and Salamati H 2015 J. Alloys Compd. 640 408
[5] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J and Morkoç H 2005 J. Appl. Phys. 98 041301
[6] Zhang S B, Wei S H and Zunger A 1998 J. Appl. Phys. 83 3192
[7] Suja M, Bashar S B, Morshed M M and Liu J 2015 ACS Applied materials & interfaces 7 8894
[8] Kim Y, Choe J, Nam G, Kim I, Leem J Y, Lee S H, Kim S, Kim D Y and Kim S O 2015 J. Korean Phys. Soc. 66 224
[9] Jiang N, Roehl J L, Khare S V, Georgiev D G and Jayatissa A H 2014 Thin Solid Films 564 331
[10] Huang X, Chen R, Zhang C, Chai J, Wang S, Chi D and Chua S J 2016 Adv. Opt. Mater 4 960
[11] Abinaya C, Marikkannan M, Manikandan M, Mayandi J, Suresh P, Shanmugaiah V, Ekstrum C and Pearce J M 2016 Mater. Chem. Phys. 184 172
[12] Yan Y, Al-Jassim M M and Wei S H 2006 Appl. Phys. Lett. 89 181912
[13] Ying Z C, Jing W and Lei B Y 2010 Chin. Phys. B 19 047101
[14] Xu S S, Lu H L, Zhang Y, Wang T, Geng Y, Huang W, Ding S J and Zhang D W 2015 J. Alloys Compd. 638 133
[15] McCluskey M D, Corolewski C D, Lv J, Tarun M C, Teklemichael S T, Walter E D, Norton M G, Harrison K W and Ha S 2015 J. Appl. Phys. 117 112802
[16] Azarov A, Vines L, Rauwel P, Monakhov E and Svensson B G 2016 J. Appl. Phys. 119 185705
[17] Xu Z and Hou Q 2015 Acta Phys. Sin. 64 157101(in Chinese)
[18] Chen X M, Ji Y, Gao X Y and Zhao X W 2012 Chin. Phys. B 21 116801
[19] Wan Q, Xiong Z, Dai J, Rao J and Jiang F 2008 Opt. Mater. 30 817
[20] Ul Haq B, Ahmed R, Shaari A and Goumri-Said S 2014 J. Magn. Magn. Mater. 362 104
[21] Fan J and Freer R 1995 J. Appl. Phys. 77 4795
[22] Myers M A, Joon Hwan L, Zhenxing B and Haiyan M 2012 J. Phys.:Condens. Matter 24 229501
[23] Myers M A, Khranovskyy V, Jian J, Lee J H, Wang H and Wang H 2015 J. Appl. Phys. 118 065702
[24] Li J C, Cao Q and Hou X Y 2013 J. Appl. Phys. 113 203518
[25] Khosravi-Gandomani S, Yousefi R, Jamali-Sheini F and Huang N M 2014 Ceram. Int. 40 7957
[26] Körner W, Bristowe P D and Elsässer C 2011 Phys. Rev. B 84 045305
[27] Sato Y, Yamamoto T and Ikuhara Y 2007 J. Am. Ceram. Soc. 90 337
[28] Li Y H, Xia Q, Guo S K, Ma Z Q, Gao Y B, Gong X G and Wei S H 2015 J. Appl. Phys. 118 045708
[29] Erhart P, Klein A and Albe K 2005 Phys. Rev. B 72 085213
[30] Agapito L A, Curtarolo S and Buongiorno Nardelli M 2015 Phys. Rev. X 5 011006
[31] Wu J, Tang X, Long F and Tang B 2017 Acta Phys. Sin. 66 137101(in Chinese)
[32] Hou Q Y, Wu Y and Zhao C W 2014 Acta Phys. Sin. 63 137201(in Chinese)
[33] Limpijumnong S, Li X, Wei S H and Zhang S B 2005 Appl. Phys. Lett. 86 211910
[34] Lathiotakis N N andriotis A N and Menon M 2008 Phys. Rev. B 78 193311
[35] Guo T, Dong G, Chen Q, Gao F and Diao X 2014 J. Supercond. Nov. Magn. 27 835
[36] Huang B 2016 Solid State Commun. 237-23834
[37] Lide D R 2014 CRC Handbook of Chemistry and Physics 95th ed. (New York:CRC Press)
[38] Li H, Schirra L K, Shim J, Cheun H, Kippelen B, Monti O L A and Bredas J L 2012 Chem. Mater. 24 3044
[39] Long S, Li Y, Yao B, Ding Z, Xu Y, Yang G, Deng R, Xiao Z, Zhao D, Zhang Z, Zhang L and Zhao H 2016 Thin Solid Films 600 13
[40] Shih B C, Zhang Y, Zhang W and Zhang P 2012 Phys. Rev. B 85 045132
[41] Kumar R, Singh F, Angadi B, Choi J W, Choi W K, Jeong K, Song J H, Khan M W, Srivastava J P, Kumar A and Tandon R P 2006 J. Appl. Phys. 100 113708
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
No Suggested Reading articles found!