Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 056105    DOI: 10.1088/1674-1056/27/5/056105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Polycrystalline cubic boron nitride prepared with cubic-hexagonal boron nitride under high pressure and high temperature

Ming Yang(杨鸣)1, Zi-Li Kou(寇自力)1, Teng Liu(刘腾)1, Jing-Rui Lu(卢景瑞)1, Fang-Ming Liu(刘方明)2, Yin-Juan Liu(刘银娟)1, Lei Qi(戚磊)1, Wei Ding(丁未)1, Hong-Xia Gong(龚红霞)1, Xiao-Lin Ni(倪小林)1, Duan-Wei He(贺端威)1
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 College of Mechanical and Electrical Engineering, Yangtze Normal University, Chongqing 408100, China
Abstract  Polycrystalline cubic boron nitride (PcBN) compacts, using the mixture of submicron cubic boron nitride (cBN) powder and hexagonal BN (hBN) powder as starting materials, were sintered at pressures of 6.5-10.0 GPa and temperature of 1750℃ without additives. In this paper, the sintering behavior and mechanical properties of samples were investigated. The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and hBN contents ranged from 20 vol.% to 24 vol.%, which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure. Transmission electron microscopy (TEM) analysis shows that after high pressure and high temperature (HPHT) treatments, the submicron cBN grains abounded with high-density nanotwins and stacking faults, and this contributed to the outstanding mechanical properties of PcBN. The pure bulk PcBN that was obtained at 7.7 GPa/1750℃ possessed the outstanding properties, including a high Vickers hardness (~61.5 GPa), thermal stability (~1290℃ in air), and high density (~3.46 g/cm3).
Keywords:  PcBN compact      high temperature and high pressure sintering      PcBN without additive  
Received:  27 November 2017      Revised:  10 February 2018      Accepted manuscript online: 
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
Corresponding Authors:  Zi-Li Kou     E-mail:  kouzili@scu.edu.cn

Cite this article: 

Ming Yang(杨鸣), Zi-Li Kou(寇自力), Teng Liu(刘腾), Jing-Rui Lu(卢景瑞), Fang-Ming Liu(刘方明), Yin-Juan Liu(刘银娟), Lei Qi(戚磊), Wei Ding(丁未), Hong-Xia Gong(龚红霞), Xiao-Lin Ni(倪小林), Duan-Wei He(贺端威) Polycrystalline cubic boron nitride prepared with cubic-hexagonal boron nitride under high pressure and high temperature 2018 Chin. Phys. B 27 056105

[11] Solozhenko V L, Kurakevych O O and Le Godec Y 2012 Adv. Mater. 24 1540
[12] Sumiya H, Harano K and Ishida Y 2014 Diam. Relat. Mater. 41 14
[1] Neo K S, Rahman M, Li X P, Khoo H H, Sawa M and Maeda Y 2003 J. Mater. Process. Technol. 140 326
[13] Ma D J, Kou Z L, Liu Y J, Wang Y K, Gao S P, Luo X, Li W T, Wang Y H, Du Y C and Lei L 2016 Int. J. Refract. Met. Hard Mater. 54 427
[2] He D W, Zhao Y S, Daemen L, Qian J and Shen T D 2002 Appl. Phys. Lett. 81 643
[14] Chen C L, Huang R, Wang Z C, Shibata N, Taniguchi T and Ikuhara Y 2013 Diam. Relat. Mater. 32 27
[3] Jia H S, Zhu P W, Ye H, Zuo B, E Y L, Xu S C, Li J, Li H B, Jia X P and Ma H A 2017 Chin. Phys. B 26 018102
[15] Liu G D, Kou Z L, Yan X Z, Lei L, Peng F, Wang Q M, Wang K X, Wang P, Li L, Li Y, Li W T, Wang Y H and Bi Y 2015 Appl. Phys. Lett. 106 121901
[4] Benko E 1997 Diam. Relat. Mater. 6 1192
[16] Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X and Li S C 2010 Rev. Sci. Instrum. 81 116102
[5] Sumiya H and Harano K 2016 Sei. Technol. Rev. 82 21
[17] Wang W D, He D W, Tang M J, Li F J, Liu L and Bi Y 2012 Diam. Relat. Mater. 27 49
[6] Tan N, Liu C J, Li Y J, Dou Y W, Wang H K, Ma H, Kou Z L and He D W 2011 Eur. Phys. J. Appl. Phys. 53 11501
[18] Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J and Hui B 2013 Int. J. Refract. Met. Hard Mater. 36 232
[7] Liu T, Kou Z L, Lu J R, Yan X Z, Liu F M, Li X, Ding W, Liu J, Zhang Q, Wang Q, Ma D J, Lei L and He D W 2017 J. Appl. Phys. 121 125902
[19] Petrusha I A 2000 Diam. Relat. Mater. 9 1487
[8] Bundy F P and Wentorf R H 1963 J. Chem. Phys. 38 1144
[20] Britun V F, Kurdyumov A V and Borimchuk N I 2007 Diam. Relat. Mater. 16 267
[9] Akaishi M, Satoh T, Ishii M, Taniguchi T and Yamaoka S 1993 J. Mater. Sci. Lett. 12 1883
[21] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L and Liu Z Y 2013 Nature 493 385
[10] Sumiya H, Uesaka S and Satoh S 2000 J. Mater. Sci. 35 1181
[22] Lu K, Lu L and Suresh S 2009 Science 324 349
[11] Solozhenko V L, Kurakevych O O and Le Godec Y 2012 Adv. Mater. 24 1540
[23] Lu L, Chen X, Huang X and Lu K 2009 Science 323 607
[12] Sumiya H, Harano K and Ishida Y 2014 Diam. Relat. Mater. 41 14
[24] Ouyang G, Zhu W G, Sun C Q, Zhu Z M and Liao S Z 2010 Phys. Chem. Chem. Phys. 12 1543
[13] Ma D J, Kou Z L, Liu Y J, Wang Y K, Gao S P, Luo X, Li W T, Wang Y H, Du Y C and Lei L 2016 Int. J. Refract. Met. Hard Mater. 54 427
[25] Sumiya H and Irifune T 2007 J. Mater. Res. 22 2345
[14] Chen C L, Huang R, Wang Z C, Shibata N, Taniguchi T and Ikuhara Y 2013 Diam. Relat. Mater. 32 27
[26] Datta A, Srirangarajan A, Waghmare U V, Ramamurty U and To A C 2011 Comp. Mater. Sci. 50 3342
[15] Liu G D, Kou Z L, Yan X Z, Lei L, Peng F, Wang Q M, Wang K X, Wang P, Li L, Li Y, Li W T, Wang Y H and Bi Y 2015 Appl. Phys. Lett. 106 121901
[27] Zheng S J, Zhang R F, Huang R, Taniguchi T, Ma X L, Ikuhara Y and Beyerlein I J 2016 Appl. Phys. Lett. 109 081901
[16] Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X and Li S C 2010 Rev. Sci. Instrum. 81 116102
[28] Dubrovinskaia N, Dub S and Dubrovinsky L 2006 Nano Lett. 6 824
[17] Wang W D, He D W, Tang M J, Li F J, Liu L and Bi Y 2012 Diam. Relat. Mater. 27 49
[29] Taniguchi T, Akaishi M and Yamaoka S 1996 J. Am. Ceram. Soc. 79 547
[18] Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J and Hui B 2013 Int. J. Refract. Met. Hard Mater. 36 232
[30] Hu Q W, Lei L, Yan X Z, Zhang L L, Li X D, Peng F and He D W 2016 Appl. Phys. Lett. 109 071903
[19] Petrusha I A 2000 Diam. Relat. Mater. 9 1487
[31] Yu X H, Raterron P, Zhang J Z, Lin Z J, Wang L P and Zhao Y S 2012 Sci. Rep. 2 876
[20] Britun V F, Kurdyumov A V and Borimchuk N I 2007 Diam. Relat. Mater. 16 267
[32] Brookes C A, Hooper R M and Lambert W A 2006 Philo. Mag. A 47 L9
[21] Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L and Liu Z Y 2013 Nature 493 385
[33] Wang P, He D W, Wang L P, Kou Z L, Li Y, Xiong L, Hu Q W, Xu C, Lei L, Wang Q M, Liu J and Zhao Y S 2015 Appl. Phys. Lett. 107 101901
[22] Lu K, Lu L and Suresh S 2009 Science 324 349
[34] Wentorf R H, DeVries R C and Bundy F P 1980 Science 208 873
[23] Lu L, Chen X, Huang X and Lu K 2009 Science 323 607
[24] Ouyang G, Zhu W G, Sun C Q, Zhu Z M and Liao S Z 2010 Phys. Chem. Chem. Phys. 12 1543
[25] Sumiya H and Irifune T 2007 J. Mater. Res. 22 2345
[26] Datta A, Srirangarajan A, Waghmare U V, Ramamurty U and To A C 2011 Comp. Mater. Sci. 50 3342
[27] Zheng S J, Zhang R F, Huang R, Taniguchi T, Ma X L, Ikuhara Y and Beyerlein I J 2016 Appl. Phys. Lett. 109 081901
[28] Dubrovinskaia N, Dub S and Dubrovinsky L 2006 Nano Lett. 6 824
[29] Taniguchi T, Akaishi M and Yamaoka S 1996 J. Am. Ceram. Soc. 79 547
[30] Hu Q W, Lei L, Yan X Z, Zhang L L, Li X D, Peng F and He D W 2016 Appl. Phys. Lett. 109 071903
[31] Yu X H, Raterron P, Zhang J Z, Lin Z J, Wang L P and Zhao Y S 2012 Sci. Rep. 2 876
[32] Brookes C A, Hooper R M and Lambert W A 2006 Philo. Mag. A 47 L9
[33] Wang P, He D W, Wang L P, Kou Z L, Li Y, Xiong L, Hu Q W, Xu C, Lei L, Wang Q M, Liu J and Zhao Y S 2015 Appl. Phys. Lett. 107 101901
[34] Wentorf R H, DeVries R C and Bundy F P 1980 Science 208 873
[1] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[2] Pressure-induced novel structure with graphene-like boron-layer in titanium monoboride
Yuan-Yuan Jin(金园园), Jin-Quan Zhang(张金权), Shan Ling(凌山), Yan-Qi Wang(王妍琪), Song Li(李松), Fang-Guang Kuang(匡芳光), Zhi-Yan Wu(武志燕), and Chuan-Zhao Zhang(张传钊). Chin. Phys. B, 2022, 31(11): 116104.
[3] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[4] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[5] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[6] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[7] Theoretical study of novel B-C-O compoundswith non-diamond isoelectronic
Chao Liu(刘超) and Pan Ying(应盼). Chin. Phys. B, 2022, 31(2): 026201.
[8] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[9] Heredity of clusters in the rapidly cooling processes of Al-doped Zr50Cu50 melts and its correlation with the glass-forming ability
Dadong Wen(文大东), Yonghe Deng(邓永和), Ming Gao(高明), and Zean Tian(田泽安). Chin. Phys. B, 2021, 30(7): 076101.
[10] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[11] Ground-state structure and physical properties of YB 3 predicted from first-principles calculations
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华). Chin. Phys. B, 2021, 30(4): 046101.
[12] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[13] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡. Chin. Phys. B, 2020, 29(10): 103102.
[14] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[15] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
No Suggested Reading articles found!