CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Polycrystalline cubic boron nitride prepared with cubic-hexagonal boron nitride under high pressure and high temperature |
Ming Yang(杨鸣)1, Zi-Li Kou(寇自力)1, Teng Liu(刘腾)1, Jing-Rui Lu(卢景瑞)1, Fang-Ming Liu(刘方明)2, Yin-Juan Liu(刘银娟)1, Lei Qi(戚磊)1, Wei Ding(丁未)1, Hong-Xia Gong(龚红霞)1, Xiao-Lin Ni(倪小林)1, Duan-Wei He(贺端威)1 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2 College of Mechanical and Electrical Engineering, Yangtze Normal University, Chongqing 408100, China |
|
|
Abstract Polycrystalline cubic boron nitride (PcBN) compacts, using the mixture of submicron cubic boron nitride (cBN) powder and hexagonal BN (hBN) powder as starting materials, were sintered at pressures of 6.5-10.0 GPa and temperature of 1750℃ without additives. In this paper, the sintering behavior and mechanical properties of samples were investigated. The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and hBN contents ranged from 20 vol.% to 24 vol.%, which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure. Transmission electron microscopy (TEM) analysis shows that after high pressure and high temperature (HPHT) treatments, the submicron cBN grains abounded with high-density nanotwins and stacking faults, and this contributed to the outstanding mechanical properties of PcBN. The pure bulk PcBN that was obtained at 7.7 GPa/1750℃ possessed the outstanding properties, including a high Vickers hardness (~61.5 GPa), thermal stability (~1290℃ in air), and high density (~3.46 g/cm3).
|
Received: 27 November 2017
Revised: 10 February 2018
Accepted manuscript online:
|
PACS:
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
61.72.Ff
|
(Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))
|
|
81.20.Ev
|
(Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)
|
|
Corresponding Authors:
Zi-Li Kou
E-mail: kouzili@scu.edu.cn
|
Cite this article:
Ming Yang(杨鸣), Zi-Li Kou(寇自力), Teng Liu(刘腾), Jing-Rui Lu(卢景瑞), Fang-Ming Liu(刘方明), Yin-Juan Liu(刘银娟), Lei Qi(戚磊), Wei Ding(丁未), Hong-Xia Gong(龚红霞), Xiao-Lin Ni(倪小林), Duan-Wei He(贺端威) Polycrystalline cubic boron nitride prepared with cubic-hexagonal boron nitride under high pressure and high temperature 2018 Chin. Phys. B 27 056105
|
[11] |
Solozhenko V L, Kurakevych O O and Le Godec Y 2012 Adv. Mater. 24 1540
|
[12] |
Sumiya H, Harano K and Ishida Y 2014 Diam. Relat. Mater. 41 14
|
[1] |
Neo K S, Rahman M, Li X P, Khoo H H, Sawa M and Maeda Y 2003 J. Mater. Process. Technol. 140 326
|
[13] |
Ma D J, Kou Z L, Liu Y J, Wang Y K, Gao S P, Luo X, Li W T, Wang Y H, Du Y C and Lei L 2016 Int. J. Refract. Met. Hard Mater. 54 427
|
[2] |
He D W, Zhao Y S, Daemen L, Qian J and Shen T D 2002 Appl. Phys. Lett. 81 643
|
[14] |
Chen C L, Huang R, Wang Z C, Shibata N, Taniguchi T and Ikuhara Y 2013 Diam. Relat. Mater. 32 27
|
[3] |
Jia H S, Zhu P W, Ye H, Zuo B, E Y L, Xu S C, Li J, Li H B, Jia X P and Ma H A 2017 Chin. Phys. B 26 018102
|
[15] |
Liu G D, Kou Z L, Yan X Z, Lei L, Peng F, Wang Q M, Wang K X, Wang P, Li L, Li Y, Li W T, Wang Y H and Bi Y 2015 Appl. Phys. Lett. 106 121901
|
[4] |
Benko E 1997 Diam. Relat. Mater. 6 1192
|
[16] |
Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X and Li S C 2010 Rev. Sci. Instrum. 81 116102
|
[5] |
Sumiya H and Harano K 2016 Sei. Technol. Rev. 82 21
|
[17] |
Wang W D, He D W, Tang M J, Li F J, Liu L and Bi Y 2012 Diam. Relat. Mater. 27 49
|
[6] |
Tan N, Liu C J, Li Y J, Dou Y W, Wang H K, Ma H, Kou Z L and He D W 2011 Eur. Phys. J. Appl. Phys. 53 11501
|
[18] |
Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J and Hui B 2013 Int. J. Refract. Met. Hard Mater. 36 232
|
[7] |
Liu T, Kou Z L, Lu J R, Yan X Z, Liu F M, Li X, Ding W, Liu J, Zhang Q, Wang Q, Ma D J, Lei L and He D W 2017 J. Appl. Phys. 121 125902
|
[19] |
Petrusha I A 2000 Diam. Relat. Mater. 9 1487
|
[8] |
Bundy F P and Wentorf R H 1963 J. Chem. Phys. 38 1144
|
[20] |
Britun V F, Kurdyumov A V and Borimchuk N I 2007 Diam. Relat. Mater. 16 267
|
[9] |
Akaishi M, Satoh T, Ishii M, Taniguchi T and Yamaoka S 1993 J. Mater. Sci. Lett. 12 1883
|
[21] |
Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L and Liu Z Y 2013 Nature 493 385
|
[10] |
Sumiya H, Uesaka S and Satoh S 2000 J. Mater. Sci. 35 1181
|
[22] |
Lu K, Lu L and Suresh S 2009 Science 324 349
|
[11] |
Solozhenko V L, Kurakevych O O and Le Godec Y 2012 Adv. Mater. 24 1540
|
[23] |
Lu L, Chen X, Huang X and Lu K 2009 Science 323 607
|
[12] |
Sumiya H, Harano K and Ishida Y 2014 Diam. Relat. Mater. 41 14
|
[24] |
Ouyang G, Zhu W G, Sun C Q, Zhu Z M and Liao S Z 2010 Phys. Chem. Chem. Phys. 12 1543
|
[13] |
Ma D J, Kou Z L, Liu Y J, Wang Y K, Gao S P, Luo X, Li W T, Wang Y H, Du Y C and Lei L 2016 Int. J. Refract. Met. Hard Mater. 54 427
|
[25] |
Sumiya H and Irifune T 2007 J. Mater. Res. 22 2345
|
[14] |
Chen C L, Huang R, Wang Z C, Shibata N, Taniguchi T and Ikuhara Y 2013 Diam. Relat. Mater. 32 27
|
[26] |
Datta A, Srirangarajan A, Waghmare U V, Ramamurty U and To A C 2011 Comp. Mater. Sci. 50 3342
|
[15] |
Liu G D, Kou Z L, Yan X Z, Lei L, Peng F, Wang Q M, Wang K X, Wang P, Li L, Li Y, Li W T, Wang Y H and Bi Y 2015 Appl. Phys. Lett. 106 121901
|
[27] |
Zheng S J, Zhang R F, Huang R, Taniguchi T, Ma X L, Ikuhara Y and Beyerlein I J 2016 Appl. Phys. Lett. 109 081901
|
[16] |
Wang H K, He D W, Tan N, Wang W D, Wang J H, Dong H N, Ma H, Kou Z L, Peng F, Liu X and Li S C 2010 Rev. Sci. Instrum. 81 116102
|
[28] |
Dubrovinskaia N, Dub S and Dubrovinsky L 2006 Nano Lett. 6 824
|
[17] |
Wang W D, He D W, Tang M J, Li F J, Liu L and Bi Y 2012 Diam. Relat. Mater. 27 49
|
[29] |
Taniguchi T, Akaishi M and Yamaoka S 1996 J. Am. Ceram. Soc. 79 547
|
[18] |
Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J and Hui B 2013 Int. J. Refract. Met. Hard Mater. 36 232
|
[30] |
Hu Q W, Lei L, Yan X Z, Zhang L L, Li X D, Peng F and He D W 2016 Appl. Phys. Lett. 109 071903
|
[19] |
Petrusha I A 2000 Diam. Relat. Mater. 9 1487
|
[31] |
Yu X H, Raterron P, Zhang J Z, Lin Z J, Wang L P and Zhao Y S 2012 Sci. Rep. 2 876
|
[20] |
Britun V F, Kurdyumov A V and Borimchuk N I 2007 Diam. Relat. Mater. 16 267
|
[32] |
Brookes C A, Hooper R M and Lambert W A 2006 Philo. Mag. A 47 L9
|
[21] |
Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L and Liu Z Y 2013 Nature 493 385
|
[33] |
Wang P, He D W, Wang L P, Kou Z L, Li Y, Xiong L, Hu Q W, Xu C, Lei L, Wang Q M, Liu J and Zhao Y S 2015 Appl. Phys. Lett. 107 101901
|
[22] |
Lu K, Lu L and Suresh S 2009 Science 324 349
|
[34] |
Wentorf R H, DeVries R C and Bundy F P 1980 Science 208 873
|
[23] |
Lu L, Chen X, Huang X and Lu K 2009 Science 323 607
|
[24] |
Ouyang G, Zhu W G, Sun C Q, Zhu Z M and Liao S Z 2010 Phys. Chem. Chem. Phys. 12 1543
|
[25] |
Sumiya H and Irifune T 2007 J. Mater. Res. 22 2345
|
[26] |
Datta A, Srirangarajan A, Waghmare U V, Ramamurty U and To A C 2011 Comp. Mater. Sci. 50 3342
|
[27] |
Zheng S J, Zhang R F, Huang R, Taniguchi T, Ma X L, Ikuhara Y and Beyerlein I J 2016 Appl. Phys. Lett. 109 081901
|
[28] |
Dubrovinskaia N, Dub S and Dubrovinsky L 2006 Nano Lett. 6 824
|
[29] |
Taniguchi T, Akaishi M and Yamaoka S 1996 J. Am. Ceram. Soc. 79 547
|
[30] |
Hu Q W, Lei L, Yan X Z, Zhang L L, Li X D, Peng F and He D W 2016 Appl. Phys. Lett. 109 071903
|
[31] |
Yu X H, Raterron P, Zhang J Z, Lin Z J, Wang L P and Zhao Y S 2012 Sci. Rep. 2 876
|
[32] |
Brookes C A, Hooper R M and Lambert W A 2006 Philo. Mag. A 47 L9
|
[33] |
Wang P, He D W, Wang L P, Kou Z L, Li Y, Xiong L, Hu Q W, Xu C, Lei L, Wang Q M, Liu J and Zhao Y S 2015 Appl. Phys. Lett. 107 101901
|
[34] |
Wentorf R H, DeVries R C and Bundy F P 1980 Science 208 873
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|