CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Ground-state structure and physical properties of YB 3 predicted from first-principles calculations |
Bin-Hua Chu(初斌华)†, Yuan Zhao(赵元), and De-Hua Wang(王德华) |
1 School of Physics and Opto-Electronic Engineering, Ludong University, Yantai 264025, China |
|
|
Abstract Using the calypso algorithm with first-principles calculations, we have predicted two orthorhombic Cmmm and Pmmm structures for YB3. The new structures are energetically much better than the previously proposed WB3-type, ReB3-type, FeB3-type, and TcP3-type structures. We find that the Cmmm phase transforms to the Pmmm phase at about 31 GPa. Subsequent calculations show that the Cmmm phase is mechanical and dynamical stable at ambient conditions. The analysis of the chemical bonding properties indicates that there are strong B-B bonds that make considerable contributions to its stability.
|
Received: 22 October 2020
Revised: 16 November 2020
Accepted manuscript online: 02 December 2020
|
PACS:
|
61.50.Ah
|
(Theory of crystal structure, crystal symmetry; calculations and modeling)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
61.66.Fn
|
(Inorganic compounds)
|
|
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11704170 and 61705097) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016AP02, ZR2016EMP01, and ZR2019MA066). |
Corresponding Authors:
†Corresponding author. E-mail: chubinhua0125@126.com
|
Cite this article:
Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华) Ground-state structure and physical properties of YB 3 predicted from first-principles calculations 2021 Chin. Phys. B 30 046101
|
1 Haines J, Leger J and Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1 2 Veprek S 2013 J. Vac. Sci. Technol. A 31 050822 3 Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268 4 Brazhkin V V, Lyapin A G and Hemley R J 2002 Philos. Mag. A 82 231 5 Levine J B, Tolbert S H and Kaner R B 2010 Adv. Funct. Mater. 19 3519 6 Mounet N and Marzari N 2005 Phys. Rev. B 71 205214 7 Occelli F, Loubeyre P and LeToullec R 2003 Nat. Mater. 2 151 8 Zheng J C 2005 Phys. Rev. B 72 052105 9 Zhang Y, Sun H and Chen C F 2006 Phys. Rev. B 73 144115 10 Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science 316 436 11 Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904 12 Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H and Kaner R B 2005 J. Am. Chem. Soc. 127 7264 13 Gu Q F, Krauss G and Steurer W 2008 Adv. Mater. 20 3620 14 Li Q, Zhou D, Zheng W T, Ma Y M and Chen C F 2013 Phys. Rev. Lett. 110 136403 15 Lu C, Li Q, Ma Y M and Chen C F 2017 Phys. Rev. Lett. 119 115503 16 Tse J S, Klug D D, Uehara K and Li Z Q 2000 Phys. Rev. B 61 10029 17 Li Q, Zhou D, Zheng W T, Ma Y M and Chen C F 2015 Phys. Rev. Lett. 115 185502 18 Knappschneider A, Litterscheid C, Kurzman J, Seshadri R and Albert B 2011 Inorg. Chem. 50 10540 19 Niu H Y, Wang J Q, Chen X Q, Li D Z and Kolmogorov A N 2012 Phys. Rev. B 85 144116 20 Li B, Sun H and Chen C F 2014 Phys. Rev. B 90 014106 21 Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Tendeloo G V, Nakajima Y, Kolmogorov A N and Dubrovinsky L 2013 Phys. Rev. Lett. 111 157002 22 Zhang M G, Yan H Y, Zhang G T and Wang H 2012 J. Phys. Chem. C 116 4293 23 Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B and Tolbert S H 2012 Phys. Rev. B 85 064118 24 Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H and Kaner R B 2012 J. Am. Chem. Soc. 134 20660 25 Wang S, Yu X, Zhang J, Zhang Y, Wang L, Leinenweber K, Xu H, Popov D, Park C, Yang W, He D and Zhao Y 2014 J. Superhard Mater. 36 279 26 Litterscheid C, Knappschneider A and Albert B 2012 Z. Anorg. Allg. Chem. 638 1608 27 Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R and Albert B 2014 Angew. Chem. Int. Ed. 53 1684 28 Zhang M, Lu M C, Du Y H, Gao L L, Lu C and Liu H Y 2014 J. Chem. Phys. 140 174505 29 Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Van Tendeloo G, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Kon\opkovà Z, Liermann H P, Dubrovinsky L and Dubrovinskaia N 2014 Phys. Rev. B 89 064108 30 Wu L, Wan B, Zhao Y, Zhang Y, Liu H, Wang Y, Zhang J and Gou H 2015 J. Phys. Chem. C 119 21649 31 Zhang G T, Gao R, Zhao Y R, Bai T T and Hu Y F 2017 J. Alloys Compd. 723 802 32 Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K and Veprek S 2012 Phys. Rev. Lett. 108 255502 33 Zhang X Z, Zhao E J and Wu Z J 2015 J. Alloys Compd. 632 37 34 Wei S L, Li D, Lv Y Z, Liu Z and Cui T 2016 Phys. Chem. Chem. Phys. 18 18074 35 Zhang M G, Wang H, Wang H B, Cui T and Ma Y M 2010 J. Phys. Chem. C 114 6722 36 Yan Q, Wang Y X, Wang B, Yang J M and Yang G 2015 RSC Adv. 5 25919 37 Zhong M M, Kuang X Y, Wang Z H, Shao P, Ding L P and Huang X F 2013 J. Chem. Phys. 139 234503 38 Ying C, Bai X W, Du Y G, Zhao E J, Lin L and Hou Q Y 2016 Int. J. Mod. Phys. B 30 1650131 39 Ji Z W, Hu C H, Wang D H, Zhong Y, Yang J, Zhang W Q and Zhou H Y 2012 Acta Mater. 60 4208 40 Wang Y C, Yao T K, Wang L M, Yao J, Li H, Zhang J W and Gou H Y 2013 Dalton Trans. 42 7041 41 Huang L H, Zhao Y R, Zhang G T, Zhang M G, Li P Y and Hu Y F 2019 Mol. Phys. 117 547 42 Bai T T, Zhang G T, Zhao Y R, Chen L, Mu B X, Han Y F and Wei Q 2019 Mol. Phys. 118 e1603411 43 Zhang X Y, Qin J Q, Sun X W, Xue Y N, Ma M Z and Liu R P 2013 Phys. Chem. Chem. Phys. 15 20894 44 Zhang G T, Bai T T, Zhao Y R and Hu Y F 2016 Materials 9 703 45 Jaeger B, Paluch S, Wolf W, Herzig P, Zogal O J, Shitsevalova N and Paderno Y 2005 J. Alloys Compd. 383 232 46 Waskowska A, Gerward L, Olsen J S, Babu K R, Vaitheeswaran G, Kanchana V, Svane A, Filipov V B, Levchenko G and Lyaschenko A 2011 Acta Materialia 59 4886 47 Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116 48 Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063 49 Wang Y C, Lv J, Zhu L, Lu S, Yin K T, Li Q, Wang H, Zhang L J and Ma Y M 2015 J. Phys.: Condens. Matter 27 203203 50 Kresse G and Hafner J 1993 Phys. Rev. B 47 558 51 Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245 52 Kresse G and J F 1996 J. Phys. Rev. B 54 11169 53 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 54 Kresse G and J F 1996 Phys. Rev. B 54 11169 55 Will G and Kiefer B 2001 Z. Anorg. Allg. Chem. 627 2100 56 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 57 Togo A and Tanaka I 2015 Scr. Mater. 108 1 58 Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275 59 Liang Y C, Yuan X and Zhang W Q 2011 Phys. Rev. B 83 220102 60 Pugh S F 1954 Philos. Mag. 45 823 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|