Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 046101    DOI: 10.1088/1674-1056/abcf94
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ground-state structure and physical properties of YB 3 predicted from first-principles calculations

Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华)
1 School of Physics and Opto-Electronic Engineering, Ludong University, Yantai 264025, China
Abstract  Using the calypso algorithm with first-principles calculations, we have predicted two orthorhombic Cmmm and Pmmm structures for YB3. The new structures are energetically much better than the previously proposed WB3-type, ReB3-type, FeB3-type, and TcP3-type structures. We find that the Cmmm phase transforms to the Pmmm phase at about 31 GPa. Subsequent calculations show that the Cmmm phase is mechanical and dynamical stable at ambient conditions. The analysis of the chemical bonding properties indicates that there are strong B-B bonds that make considerable contributions to its stability.
Keywords:  first-principles      high pressures      convex hull  
Received:  22 October 2020      Revised:  16 November 2020      Accepted manuscript online:  02 December 2020
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  61.66.Fn (Inorganic compounds)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11704170 and 61705097) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2016AP02, ZR2016EMP01, and ZR2019MA066).
Corresponding Authors:  Corresponding author. E-mail: chubinhua0125@126.com   

Cite this article: 

Bin-Hua Chu(初斌华), Yuan Zhao(赵元), and De-Hua Wang(王德华) Ground-state structure and physical properties of YB 3 predicted from first-principles calculations 2021 Chin. Phys. B 30 046101

1 Haines J, Leger J and Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1
2 Veprek S 2013 J. Vac. Sci. Technol. A 31 050822
3 Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
4 Brazhkin V V, Lyapin A G and Hemley R J 2002 Philos. Mag. A 82 231
5 Levine J B, Tolbert S H and Kaner R B 2010 Adv. Funct. Mater. 19 3519
6 Mounet N and Marzari N 2005 Phys. Rev. B 71 205214
7 Occelli F, Loubeyre P and LeToullec R 2003 Nat. Mater. 2 151
8 Zheng J C 2005 Phys. Rev. B 72 052105
9 Zhang Y, Sun H and Chen C F 2006 Phys. Rev. B 73 144115
10 Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science 316 436
11 Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904
12 Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H and Kaner R B 2005 J. Am. Chem. Soc. 127 7264
13 Gu Q F, Krauss G and Steurer W 2008 Adv. Mater. 20 3620
14 Li Q, Zhou D, Zheng W T, Ma Y M and Chen C F 2013 Phys. Rev. Lett. 110 136403
15 Lu C, Li Q, Ma Y M and Chen C F 2017 Phys. Rev. Lett. 119 115503
16 Tse J S, Klug D D, Uehara K and Li Z Q 2000 Phys. Rev. B 61 10029
17 Li Q, Zhou D, Zheng W T, Ma Y M and Chen C F 2015 Phys. Rev. Lett. 115 185502
18 Knappschneider A, Litterscheid C, Kurzman J, Seshadri R and Albert B 2011 Inorg. Chem. 50 10540
19 Niu H Y, Wang J Q, Chen X Q, Li D Z and Kolmogorov A N 2012 Phys. Rev. B 85 144116
20 Li B, Sun H and Chen C F 2014 Phys. Rev. B 90 014106
21 Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Tendeloo G V, Nakajima Y, Kolmogorov A N and Dubrovinsky L 2013 Phys. Rev. Lett. 111 157002
22 Zhang M G, Yan H Y, Zhang G T and Wang H 2012 J. Phys. Chem. C 116 4293
23 Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B and Tolbert S H 2012 Phys. Rev. B 85 064118
24 Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H and Kaner R B 2012 J. Am. Chem. Soc. 134 20660
25 Wang S, Yu X, Zhang J, Zhang Y, Wang L, Leinenweber K, Xu H, Popov D, Park C, Yang W, He D and Zhao Y 2014 J. Superhard Mater. 36 279
26 Litterscheid C, Knappschneider A and Albert B 2012 Z. Anorg. Allg. Chem. 638 1608
27 Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R and Albert B 2014 Angew. Chem. Int. Ed. 53 1684
28 Zhang M, Lu M C, Du Y H, Gao L L, Lu C and Liu H Y 2014 J. Chem. Phys. 140 174505
29 Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Van Tendeloo G, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Kon\opkovà Z, Liermann H P, Dubrovinsky L and Dubrovinskaia N 2014 Phys. Rev. B 89 064108
30 Wu L, Wan B, Zhao Y, Zhang Y, Liu H, Wang Y, Zhang J and Gou H 2015 J. Phys. Chem. C 119 21649
31 Zhang G T, Gao R, Zhao Y R, Bai T T and Hu Y F 2017 J. Alloys Compd. 723 802
32 Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K and Veprek S 2012 Phys. Rev. Lett. 108 255502
33 Zhang X Z, Zhao E J and Wu Z J 2015 J. Alloys Compd. 632 37
34 Wei S L, Li D, Lv Y Z, Liu Z and Cui T 2016 Phys. Chem. Chem. Phys. 18 18074
35 Zhang M G, Wang H, Wang H B, Cui T and Ma Y M 2010 J. Phys. Chem. C 114 6722
36 Yan Q, Wang Y X, Wang B, Yang J M and Yang G 2015 RSC Adv. 5 25919
37 Zhong M M, Kuang X Y, Wang Z H, Shao P, Ding L P and Huang X F 2013 J. Chem. Phys. 139 234503
38 Ying C, Bai X W, Du Y G, Zhao E J, Lin L and Hou Q Y 2016 Int. J. Mod. Phys. B 30 1650131
39 Ji Z W, Hu C H, Wang D H, Zhong Y, Yang J, Zhang W Q and Zhou H Y 2012 Acta Mater. 60 4208
40 Wang Y C, Yao T K, Wang L M, Yao J, Li H, Zhang J W and Gou H Y 2013 Dalton Trans. 42 7041
41 Huang L H, Zhao Y R, Zhang G T, Zhang M G, Li P Y and Hu Y F 2019 Mol. Phys. 117 547
42 Bai T T, Zhang G T, Zhao Y R, Chen L, Mu B X, Han Y F and Wei Q 2019 Mol. Phys. 118 e1603411
43 Zhang X Y, Qin J Q, Sun X W, Xue Y N, Ma M Z and Liu R P 2013 Phys. Chem. Chem. Phys. 15 20894
44 Zhang G T, Bai T T, Zhao Y R and Hu Y F 2016 Materials 9 703
45 Jaeger B, Paluch S, Wolf W, Herzig P, Zogal O J, Shitsevalova N and Paderno Y 2005 J. Alloys Compd. 383 232
46 Waskowska A, Gerward L, Olsen J S, Babu K R, Vaitheeswaran G, Kanchana V, Svane A, Filipov V B, Levchenko G and Lyaschenko A 2011 Acta Materialia 59 4886
47 Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
48 Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
49 Wang Y C, Lv J, Zhu L, Lu S, Yin K T, Li Q, Wang H, Zhang L J and Ma Y M 2015 J. Phys.: Condens. Matter 27 203203
50 Kresse G and Hafner J 1993 Phys. Rev. B 47 558
51 Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
52 Kresse G and J F 1996 J. Phys. Rev. B 54 11169
53 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
54 Kresse G and J F 1996 Phys. Rev. B 54 11169
55 Will G and Kiefer B 2001 Z. Anorg. Allg. Chem. 627 2100
56 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
57 Togo A and Tanaka I 2015 Scr. Mater. 108 1
58 Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275
59 Liang Y C, Yuan X and Zhang W Q 2011 Phys. Rev. B 83 220102
60 Pugh S F 1954 Philos. Mag. 45 823
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!