Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016101    DOI: 10.1088/1674-1056/abb3e7
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ab initio study on crystal structure and phase stability of ZrC2 under high pressure

Yong-Liang Guo(郭永亮)1,2,†, Jun-Hong Wei(韦俊红)1, Xiao Liu(刘潇)1, Xue-Zhi Ke(柯学志)3, and Zhao-Yong Jiao(焦照勇)2,
1 School of Science and Henan Key Laboratory of Wire and Cable Structures and Materials, Henan Institute of Technology, Xinxiang 453003, China; 2 School of Physics, Henan Normal University, Xinxiang 453007, China; 3 School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
Abstract  The structural stabilities and crystal evolution behaviors of the hyper stoichiometric compound ZrC2 (carbon rich; C/Zr > 1.0) are studied under ambient and high pressure conditions using first-principles calculations in combination with the particle-swarm optimization algorithm. Six viable structures of ZrC2 in P21/c, Cmmm, Cmc21, P42/nmc, Immm and P6/mmm symmetries are identified. These structures are dynamically stable as their phonon spectra have no imaginary modes at zero pressure or at the selected high-pressure points. Among them, the P21/c phase represents the ground state structure, whereas P21/c, P42/nmc, Immm and P6/mmm phases are part of the phase transition series. The phase order and critical pressures of the phase transition are determined to be approximately 300 GPa according to the equation of states and enthalpy. Furthermore, the mechanical and electronic properties are investigated. The P21/c and Cmc21 phases display a semi-metal nature, whereas the P42/nmc, Immm, P6/mmm and Cmmm phases exhibit a metallic nature. Moreover, the present study reveals considerable information regarding the structural, mechanical and electronic properties of ZrC2, thereby providing key insights into its material properties and evaluating its behavior in practical applications.
Keywords:  crystal structure      phase transition      mechanical property      electronic band      first-principles calculation  
Received:  04 May 2020      Revised:  21 August 2020      Accepted manuscript online:  01 September 2020
PACS:  61.05.-a (Techniques for structure determination)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  62.20.-x (Mechanical properties of solids)  
  62.50.-p (High-pressure effects in solids and liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904081 and 11975100), the Basic Research Program of Education Bureau of Henan Province, China (Grant No. 20A140007), and Research Initiation Fund of Henan Institute of Technology (Grant No. KQ1817).
Corresponding Authors:  Corresponding author. E-mail: ylguo@hait.edu.cn Corresponding author. E-mail: zhy_jiao@htu.cn   

Cite this article: 

Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇) Ab initio study on crystal structure and phase stability of ZrC2 under high pressure 2021 Chin. Phys. B 30 016101

1 Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M and Salem J A 2002 J. Eur. Ceram. Soc. 22 2757
2 Opeka M M, Talmy I G and Zaykoski J A 2004 J. Mater. Sci. 39 5887
3 Savino R, Fumo M D S, Paterna D and Serpico M 2005 Aerospace Sci. Technol. 9 151
4 Li H, Zhang L, Zeng Q, Guan K, Li K, Ren H, Liu S and Cheng L 2011 Solid State Commun. 151 602
5 Katoh Y, Vasudevamurthy G, Nozawa T and Snead L L 2013 J. Nucl. Mater. 441 718
6 Porter I E, Knight T W, Dulude M C, Roberts E and Hobbs J 2013 Nucl. Engin. Design 259 180
7 Snead L L, Katoh Y and Kondo S 2010 J. Nucl. Mater. 399 200
8 Vasudevamurthy G, Katoh Y, Aihara J, Sawa K and Snead L L 2015 J. Nucl. Mater. 464 245
9 Kim D, Chun Y B, Ko M J, Lee H G, Cho M S, Park J Y and Kim W J 2016 J. Nucl. Mater. 479 93
10 Weinberger C R and Thompson G B 2018 J. Am. Ceram. Soc. 101 4401
11 Storms E1967 The refractory carbides (New York: Academic Press)
12 Gusev A I and Rempel A A1994 J. Phys. Chem. Solids 299 14
13 Zhang Y, Liu B and Wang J 2016 Sci. Rep. 5 18098
14 Yu X X, Weinberger C R and Thompson G B 2016 Comput. Mater. Sci. 112 318
15 Xie C, Oganov A R, Li D, Debela T T, Liu N, Dong D and Zeng Q 2016 Phys. Chem. Chem. Phys. 18 12299
16 Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
17 Blöchl P E 1994 Phys. Rev. B 50 17953
18 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
19 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
20 Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
21 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
22 Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
23 Lv J, Wang Y C, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503
24 Li Q, Zhou D, Zheng W, Ma Y and Chen C 2013 Phys. Rev. Lett. 110 136403
25 Zhang M, Liu H, Li Q, Gao B, Wang Y, Li H, Chen C and Ma Y 2015 Phys. Rev. Lett. 114 015502
26 Zhang G T, Bai T T, Yan H Y and Zhao Y R 2015 Chin. Phys. B 24 106104
27 Guo Y L, Wang C Y, Qiu W J, Ke X Z, Huai P, Cheng C, Zhu Z Y and Chen C F 2016 Phys. Rev. B 94 134104
28 Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
29 Sun Y, Xu B and Yi L 2020 Chin. Phys. B 29 023102
30 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
31 Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
32 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
33 Cochran W 1959 Phys. Rev. Lett. 3 412
34 Page Y L and Saxe P 2002 Phys. Rev. B 65 104104
35 Born M 1940 Math. Proc. Cambridge Philos. Soc. 36 160
36 Born M and Huang K1954 Dynamical theory of crystal lattices (New York: Clarendon Press)
37 Wu Z J, Zhao E J, Xiang H P, Hao X M, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
38 Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
39 Voigt W2014 Lehrbuch der Kristallphysik (MIT Ausschlu\ss der Kristalloptik)(Wiesbaden: Springer-Verlag)
40 Reuss A 1929 J. Appl. Math. Mech. Z. Angew. Math. Mech. 9 49
41 Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
42 Green D J1988 An introduction to the mechanical properties of ceramics (Cambridge: Cambridge University Press)
43 Fu H, Peng W and Gao T 2009 Mater. Chem. Phys. 115 789
44 Haines J, Leger J and Bocquillon G 2001 Annu. Rev. Mater. Res. 2001 31 1
45 Pugh S F 1954 Philo. Mag. 45 823
46 Kutepov A L and Kutepova S G 2003 Phys. Rev. B 67 132102
47 Kube C M 2016 AIP Adv. 6 095209
48 Aydin S, Tatar A and Ciftci Y O 2012 J. Nucl. Mater. 429 55
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[8] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[9] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[10] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[11] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[12] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[13] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[14] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[15] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
No Suggested Reading articles found!