CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Ab initio study on crystal structure and phase stability of ZrC2 under high pressure |
Yong-Liang Guo(郭永亮)1,2,†, Jun-Hong Wei(韦俊红)1, Xiao Liu(刘潇)1, Xue-Zhi Ke(柯学志)3, and Zhao-Yong Jiao(焦照勇)2,‡ |
1 School of Science and Henan Key Laboratory of Wire and Cable Structures and Materials, Henan Institute of Technology, Xinxiang 453003, China; 2 School of Physics, Henan Normal University, Xinxiang 453007, China; 3 School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China |
|
|
Abstract The structural stabilities and crystal evolution behaviors of the hyper stoichiometric compound ZrC2 (carbon rich; C/Zr > 1.0) are studied under ambient and high pressure conditions using first-principles calculations in combination with the particle-swarm optimization algorithm. Six viable structures of ZrC2 in P21/c, Cmmm, Cmc21, P42/nmc, Immm and P6/mmm symmetries are identified. These structures are dynamically stable as their phonon spectra have no imaginary modes at zero pressure or at the selected high-pressure points. Among them, the P21/c phase represents the ground state structure, whereas P21/c, P42/nmc, Immm and P6/mmm phases are part of the phase transition series. The phase order and critical pressures of the phase transition are determined to be approximately 300 GPa according to the equation of states and enthalpy. Furthermore, the mechanical and electronic properties are investigated. The P21/c and Cmc21 phases display a semi-metal nature, whereas the P42/nmc, Immm, P6/mmm and Cmmm phases exhibit a metallic nature. Moreover, the present study reveals considerable information regarding the structural, mechanical and electronic properties of ZrC2, thereby providing key insights into its material properties and evaluating its behavior in practical applications.
|
Received: 04 May 2020
Revised: 21 August 2020
Accepted manuscript online: 01 September 2020
|
PACS:
|
61.05.-a
|
(Techniques for structure determination)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904081 and 11975100), the Basic Research Program of Education Bureau of Henan Province, China (Grant No. 20A140007), and Research Initiation Fund of Henan Institute of Technology (Grant No. KQ1817). |
Corresponding Authors:
†Corresponding author. E-mail: ylguo@hait.edu.cn ‡Corresponding author. E-mail: zhy_jiao@htu.cn
|
Cite this article:
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇) Ab initio study on crystal structure and phase stability of ZrC2 under high pressure 2021 Chin. Phys. B 30 016101
|
1 Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M and Salem J A 2002 J. Eur. Ceram. Soc. 22 2757 2 Opeka M M, Talmy I G and Zaykoski J A 2004 J. Mater. Sci. 39 5887 3 Savino R, Fumo M D S, Paterna D and Serpico M 2005 Aerospace Sci. Technol. 9 151 4 Li H, Zhang L, Zeng Q, Guan K, Li K, Ren H, Liu S and Cheng L 2011 Solid State Commun. 151 602 5 Katoh Y, Vasudevamurthy G, Nozawa T and Snead L L 2013 J. Nucl. Mater. 441 718 6 Porter I E, Knight T W, Dulude M C, Roberts E and Hobbs J 2013 Nucl. Engin. Design 259 180 7 Snead L L, Katoh Y and Kondo S 2010 J. Nucl. Mater. 399 200 8 Vasudevamurthy G, Katoh Y, Aihara J, Sawa K and Snead L L 2015 J. Nucl. Mater. 464 245 9 Kim D, Chun Y B, Ko M J, Lee H G, Cho M S, Park J Y and Kim W J 2016 J. Nucl. Mater. 479 93 10 Weinberger C R and Thompson G B 2018 J. Am. Ceram. Soc. 101 4401 11 Storms E1967 The refractory carbides (New York: Academic Press) 12 Gusev A I and Rempel A A1994 J. Phys. Chem. Solids 299 14 13 Zhang Y, Liu B and Wang J 2016 Sci. Rep. 5 18098 14 Yu X X, Weinberger C R and Thompson G B 2016 Comput. Mater. Sci. 112 318 15 Xie C, Oganov A R, Li D, Debela T T, Liu N, Dong D and Zeng Q 2016 Phys. Chem. Chem. Phys. 18 12299 16 Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116 17 Blöchl P E 1994 Phys. Rev. B 50 17953 18 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 19 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 20 Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 21 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 22 Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063 23 Lv J, Wang Y C, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503 24 Li Q, Zhou D, Zheng W, Ma Y and Chen C 2013 Phys. Rev. Lett. 110 136403 25 Zhang M, Liu H, Li Q, Gao B, Wang Y, Li H, Chen C and Ma Y 2015 Phys. Rev. Lett. 114 015502 26 Zhang G T, Bai T T, Yan H Y and Zhao Y R 2015 Chin. Phys. B 24 106104 27 Guo Y L, Wang C Y, Qiu W J, Ke X Z, Huai P, Cheng C, Zhu Z Y and Chen C F 2016 Phys. Rev. B 94 134104 28 Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001 29 Sun Y, Xu B and Yi L 2020 Chin. Phys. B 29 023102 30 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 31 Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 32 Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 33 Cochran W 1959 Phys. Rev. Lett. 3 412 34 Page Y L and Saxe P 2002 Phys. Rev. B 65 104104 35 Born M 1940 Math. Proc. Cambridge Philos. Soc. 36 160 36 Born M and Huang K1954 Dynamical theory of crystal lattices (New York: Clarendon Press) 37 Wu Z J, Zhao E J, Xiang H P, Hao X M, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 38 Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 39 Voigt W2014 Lehrbuch der Kristallphysik (MIT Ausschlu\ss der Kristalloptik)(Wiesbaden: Springer-Verlag) 40 Reuss A 1929 J. Appl. Math. Mech. Z. Angew. Math. Mech. 9 49 41 Hill R 1952 Proc. Phys. Soc. Sect. A 65 349 42 Green D J1988 An introduction to the mechanical properties of ceramics (Cambridge: Cambridge University Press) 43 Fu H, Peng W and Gao T 2009 Mater. Chem. Phys. 115 789 44 Haines J, Leger J and Bocquillon G 2001 Annu. Rev. Mater. Res. 2001 31 1 45 Pugh S F 1954 Philo. Mag. 45 823 46 Kutepov A L and Kutepova S G 2003 Phys. Rev. B 67 132102 47 Kube C M 2016 AIP Adv. 6 095209 48 Aydin S, Tatar A and Ciftci Y O 2012 J. Nucl. Mater. 429 55 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|