CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Facile and controllable synthesis of molybdenum disulfide quantum dots for highly sensitive and selective sensing of copper ions |
Xue Li(李雪), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Yin Hu(胡音), Xuan Zhao(赵宣), Chen Fu(付晨), Jing-Yan Wu(吴静燕) |
Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract Molybdenum disulfide quantum dots (MoS2 QDs) were synthesized via a hydrothermal method using sodium molybdate and cysteine as molybdenum and sulfur sources, respectively. The optimal hydrothermal time was studied. Furthermore, the as synthesized water-soluble MoS2 QDs were used as a fluorescence probe for the sensitive and selective detection of copper ions. The fluorescence of the MoS2 QDs was quenched after the addition of copper ions; the reason may be that the transfer of the excited electron from QDs to copper ions leads to the reduction of the radiative recombination. The fluorescence quenching of MoS2 QDs is linearly dependent on the copper ions concentration ranging from 0.1 μM to 600 μM, the limit of detection is 0.098 μM, which is much lower than that of existing methods. Moreover, the MoS2 QDs show highly selectivity towards the detection of copper ions.
|
Received: 16 December 2017
Revised: 26 February 2018
Accepted manuscript online:
|
PACS:
|
61.46.Df
|
(Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
87.85.fk
|
(Biosensors)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No.2016YFA0202302),the National Natural Science Foundation of China (Grant Nos.61335006,61527817,and 61378073),the Overseas Expertise Introduction Center for Discipline Innovation,111 Center,China,and the National Basic Research Program of China (Grant No.KSJB17030536). |
Corresponding Authors:
Da-Wei He
E-mail: dwhe@bjtu.edu.cn
|
Cite this article:
Xue Li(李雪), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Yin Hu(胡音), Xuan Zhao(赵宣), Chen Fu(付晨), Jing-Yan Wu(吴静燕) Facile and controllable synthesis of molybdenum disulfide quantum dots for highly sensitive and selective sensing of copper ions 2018 Chin. Phys. B 27 056104
|
[10] |
Wang J, Zhou X, Ma H and Tao G 2011 Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 81 178
|
[1] |
Kumar M, Kumar N, Bhalla V, Sharma P R and Kaur T 2012 Org. Lett. 14 406
|
[11] |
Chen J, Li Y, Lv K, Zhong W, Wang H, Wu Z, Yi P and Jiang J 2016 Sensor. Actuat. B-Chem. 224 298
|
[2] |
Liu X, Gao W, Zhou X and Ma Y 2014 J. Mater. Res. 29 1401
|
[12] |
Wang F, Gu Z, Lei W, Wang W, Xia X and Hao Q 2014 Sensor. Actuat. B-Chem. 190 516
|
[3] |
Zhao J, Deng J, Yi Y, Li H, Zhang Y and Yao S 2014 Talanta 125 372
|
[13] |
Gan Z X, Gui Q F, Shan Y, Pan P F, Zhang N and Zhang L F 2016 J. Appl. Phys. 120 104503
|
[4] |
Jin L H and Han C S 2014 Anal. Chem. 86 7209
|
[14] |
Niu Y, Jiao W, Wang R, Ding G and Huang Y 2016 J. Mater. Chem. A 4 8198
|
[5] |
Li Y M, Zhang X L, Zhu B C, Xue J, Zhu Z and Tan W H 2011 The Analyst 136 1124
|
[15] |
Zhao X, He D W, Wang Y S, Hu Y, Fu C and Li X 2017 Chin. Phys. B 26 066102
|
[6] |
Barati A, Shamsipur M and Abdollahi H 2016 Sensor. Actuat. B-Chem. 230 289
|
[16] |
Yuwen L H, Zhou J J, Zhang Y Q, Zhang Q, Shang J Y, Luo Z M, Weng L X, Teng Z G and Wang L H 2016 Nanoscale 8 2720
|
[7] |
Jin L, Zhang Z, Tang A, Cong L and Shen Y 2016 Biosens. Bioelectron. 79 108
|
[17] |
Zhang S, Jia X F and Wang E 2016 Nanoscale. 8 15152
|
[8] |
Lan G Y, Huang C C and Chang H T 2010 Chem. Comm. 46 1257
|
[18] |
Ren X P, Ma Q, Fan H, Pang L Q, Zhang Y X, Yao Y, Ren X D and Liu S Z 2015 Chem.Commun. 51 15997
|
[9] |
Yao J, Zhang K, Zhu H, Ma F, Sun M, Yu H, Sun J and Wang S 2013 Anal. Chem. 85 6461
|
[19] |
Ren X P, Ren X D, Pang L Q, Zhang Y X, Ma Q, Fan H B and Liu S Z 2016 Int. J. Hydrogen. energ. 41 916
|
[10] |
Wang J, Zhou X, Ma H and Tao G 2011 Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 81 178
|
[20] |
Gu W, Yan Y H, Zhang C L, Ding C P, and Xian Y Z 2016 Acs. Appl. Mater. Inter. 8 11272
|
[11] |
Chen J, Li Y, Lv K, Zhong W, Wang H, Wu Z, Yi P and Jiang J 2016 Sensor. Actuat. B-Chem. 224 298
|
[21] |
Hariharan S and Karthikeyan B 2016 Rsc Advances 6 101770
|
[12] |
Wang F, Gu Z, Lei W, Wang W, Xia X and Hao Q 2014 Sensor. Actuat. B-Chem. 190 516
|
[22] |
Lö Z, Mahmood N, Tahir M, Pan L, Zhang X W and Zou J J 2016 Nanoscale 8 18250
|
[13] |
Gan Z X, Gui Q F, Shan Y, Pan P F, Zhang N and Zhang L F 2016 J. Appl. Phys. 120 104503
|
[23] |
Park S J, Sang W P, Qiu D, Kang J H, Song D Y and Kim E K 2017 J. Lumin. 183 62
|
[14] |
Niu Y, Jiao W, Wang R, Ding G and Huang Y 2016 J. Mater. Chem. A 4 8198
|
[24] |
Qiao W, Yan S, Song X, Zhang X, He X, Zhong W and Du Y 2015 Appl. Surf. SCI 359 130
|
[15] |
Zhao X, He D W, Wang Y S, Hu Y, Fu C and Li X 2017 Chin. Phys. B 26 066102
|
[25] |
Gu W, Yan Y, Cao X, Zhang C, Ding C and Xian Y 2016 J. Mater. Chem. B 4 27
|
[16] |
Yuwen L H, Zhou J J, Zhang Y Q, Zhang Q, Shang J Y, Luo Z M, Weng L X, Teng Z G and Wang L H 2016 Nanoscale 8 2720
|
[26] |
Haldar D, Dinda D and Saha S K 2016 J. Mater. Chem. C 4 6321
|
[17] |
Zhang S, Jia X F and Wang E 2016 Nanoscale. 8 15152
|
[27] |
Pei L, Tao S, Shu H and Song X 2015 Solid. State. Commun. 218 25
|
[18] |
Ren X P, Ma Q, Fan H, Pang L Q, Zhang Y X, Yao Y, Ren X D and Liu S Z 2015 Chem.Commun. 51 15997
|
[28] |
Zhou K, Zhang Y, Xia Z and Wei W 2016 Nanotechnology 27 275101
|
[19] |
Ren X P, Ren X D, Pang L Q, Zhang Y X, Ma Q, Fan H B and Liu S Z 2016 Int. J. Hydrogen. energ. 41 916
|
[29] |
Xu S, Li D and Wu P 2015 Adv. Funct. Mater. 25 1127
|
[20] |
Gu W, Yan Y H, Zhang C L, Ding C P, and Xian Y Z 2016 Acs. Appl. Mater. Inter. 8 11272
|
[30] |
Wang N, Wei F, Qi Y H, Li H X, Lu Xin, Zhao G Q and Xu Q 2014 Acs. Appl. Mater. Inter. 6 19888
|
[21] |
Hariharan S and Karthikeyan B 2016 Rsc Advances 6 101770
|
[31] |
Ren X, Pang L, Zhang Y, Ren X, Fan H and Liu S 2015 J. Mater. Chem. A 3 10693
|
[22] |
Lö Z, Mahmood N, Tahir M, Pan L, Zhang X W and Zou J J 2016 Nanoscale 8 18250
|
[32] |
Wang Z, Lin J, Gao J and Wang Q 2016 Mater. Chem. Phys. 178 82
|
[23] |
Park S J, Sang W P, Qiu D, Kang J H, Song D Y and Kim E K 2017 J. Lumin. 183 62
|
[33] |
Xua Y L, Niu X Y, Chen H L, Zhao S G and Chen X G 2017 Chin. Chem. Lett. 28 338
|
[24] |
Qiao W, Yan S, Song X, Zhang X, He X, Zhong W and Du Y 2015 Appl. Surf. SCI 359 130
|
[34] |
Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X and Zhang X 2015 Small 11 4158
|
[25] |
Gu W, Yan Y, Cao X, Zhang C, Ding C and Xian Y 2016 J. Mater. Chem. B 4 27
|
[35] |
Gopalakrishnan D, Damien D, Li B, Gullappalli H, Pillai V, Ajayan P and Shaijumon M 2015 Chem. Commun. 51 6293
|
[26] |
Haldar D, Dinda D and Saha S K 2016 J. Mater. Chem. C 4 6321
|
[36] |
Zhang X, Lai Z, Liu Z, Tan C, Huang Y, Li B, Zhao M, Xie L, Huang W and Zhang H 2015 Angew. Chem., Int. Ed. 54 5425
|
[27] |
Pei L, Tao S, Shu H and Song X 2015 Solid. State. Commun. 218 25
|
[37] |
Štengl V and Henych J 2013 Nanoscale 5 3387
|
[28] |
Zhou K, Zhang Y, Xia Z and Wei W 2016 Nanotechnology 27 275101
|
[38] |
Li B, Chen L, Zou H, Lei J, Luo H and Li N 2014 Nanoscale 6 9831
|
[29] |
Xu S, Li D and Wu P 2015 Adv. Funct. Mater. 25 1127
|
[39] |
Fahimi-Kashani N, Rashti A, Hormozi-Nezhad M R and Mahdavic V 2017 Anal. Methods 9 716
|
[30] |
Wang N, Wei F, Qi Y H, Li H X, Lu Xin, Zhao G Q and Xu Q 2014 Acs. Appl. Mater. Inter. 6 19888
|
[40] |
Li W Z, Li F, Wang X, Tang Y, Yang Y Y, Gao W B and Li R 2017 Appl. Surf. 401 190
|
[31] |
Ren X, Pang L, Zhang Y, Ren X, Fan H and Liu S 2015 J. Mater. Chem. A 3 10693
|
[41] |
Gu W, Yan Y, Zhang C, Ding C and Xian Y 2016 Acs. Appl. Mater. Interfaces 8 11272
|
[32] |
Wang Z, Lin J, Gao J and Wang Q 2016 Mater. Chem. Phys. 178 82
|
[42] |
Wang Y and Ni Y 2014 Anal. Chem. 86 7463
|
[33] |
Xua Y L, Niu X Y, Chen H L, Zhao S G and Chen X G 2017 Chin. Chem. Lett. 28 338
|
[43] |
Wang F, Gu Z, Lei W, Wang W, Xia X and Hao Q 2014 Sensor. Actuat B-Chem. 190 516
|
[34] |
Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X and Zhang X 2015 Small 11 4158
|
[35] |
Gopalakrishnan D, Damien D, Li B, Gullappalli H, Pillai V, Ajayan P and Shaijumon M 2015 Chem. Commun. 51 6293
|
[36] |
Zhang X, Lai Z, Liu Z, Tan C, Huang Y, Li B, Zhao M, Xie L, Huang W and Zhang H 2015 Angew. Chem., Int. Ed. 54 5425
|
[37] |
Štengl V and Henych J 2013 Nanoscale 5 3387
|
[38] |
Li B, Chen L, Zou H, Lei J, Luo H and Li N 2014 Nanoscale 6 9831
|
[39] |
Fahimi-Kashani N, Rashti A, Hormozi-Nezhad M R and Mahdavic V 2017 Anal. Methods 9 716
|
[40] |
Li W Z, Li F, Wang X, Tang Y, Yang Y Y, Gao W B and Li R 2017 Appl. Surf. 401 190
|
[41] |
Gu W, Yan Y, Zhang C, Ding C and Xian Y 2016 Acs. Appl. Mater. Interfaces 8 11272
|
[42] |
Wang Y and Ni Y 2014 Anal. Chem. 86 7463
|
[43] |
Wang F, Gu Z, Lei W, Wang W, Xia X and Hao Q 2014 Sensor. Actuat B-Chem. 190 516
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|