Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 056104    DOI: 10.1088/1674-1056/27/5/056104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Facile and controllable synthesis of molybdenum disulfide quantum dots for highly sensitive and selective sensing of copper ions

Xue Li(李雪), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Yin Hu(胡音), Xuan Zhao(赵宣), Chen Fu(付晨), Jing-Yan Wu(吴静燕)
Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
Abstract  

Molybdenum disulfide quantum dots (MoS2 QDs) were synthesized via a hydrothermal method using sodium molybdate and cysteine as molybdenum and sulfur sources, respectively. The optimal hydrothermal time was studied. Furthermore, the as synthesized water-soluble MoS2 QDs were used as a fluorescence probe for the sensitive and selective detection of copper ions. The fluorescence of the MoS2 QDs was quenched after the addition of copper ions; the reason may be that the transfer of the excited electron from QDs to copper ions leads to the reduction of the radiative recombination. The fluorescence quenching of MoS2 QDs is linearly dependent on the copper ions concentration ranging from 0.1 μM to 600 μM, the limit of detection is 0.098 μM, which is much lower than that of existing methods. Moreover, the MoS2 QDs show highly selectivity towards the detection of copper ions.

Keywords:  MoS2 quantum dots      photoluminescence      fluorescent probe  
Received:  16 December 2017      Revised:  26 February 2018      Accepted manuscript online: 
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  78.55.-m (Photoluminescence, properties and materials)  
  87.85.fk (Biosensors)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No.2016YFA0202302),the National Natural Science Foundation of China (Grant Nos.61335006,61527817,and 61378073),the Overseas Expertise Introduction Center for Discipline Innovation,111 Center,China,and the National Basic Research Program of China (Grant No.KSJB17030536).

Corresponding Authors:  Da-Wei He     E-mail:  dwhe@bjtu.edu.cn

Cite this article: 

Xue Li(李雪), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Yin Hu(胡音), Xuan Zhao(赵宣), Chen Fu(付晨), Jing-Yan Wu(吴静燕) Facile and controllable synthesis of molybdenum disulfide quantum dots for highly sensitive and selective sensing of copper ions 2018 Chin. Phys. B 27 056104

[10] Wang J, Zhou X, Ma H and Tao G 2011 Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 81 178
[1] Kumar M, Kumar N, Bhalla V, Sharma P R and Kaur T 2012 Org. Lett. 14 406
[11] Chen J, Li Y, Lv K, Zhong W, Wang H, Wu Z, Yi P and Jiang J 2016 Sensor. Actuat. B-Chem. 224 298
[2] Liu X, Gao W, Zhou X and Ma Y 2014 J. Mater. Res. 29 1401
[12] Wang F, Gu Z, Lei W, Wang W, Xia X and Hao Q 2014 Sensor. Actuat. B-Chem. 190 516
[3] Zhao J, Deng J, Yi Y, Li H, Zhang Y and Yao S 2014 Talanta 125 372
[13] Gan Z X, Gui Q F, Shan Y, Pan P F, Zhang N and Zhang L F 2016 J. Appl. Phys. 120 104503
[4] Jin L H and Han C S 2014 Anal. Chem. 86 7209
[14] Niu Y, Jiao W, Wang R, Ding G and Huang Y 2016 J. Mater. Chem. A 4 8198
[5] Li Y M, Zhang X L, Zhu B C, Xue J, Zhu Z and Tan W H 2011 The Analyst 136 1124
[15] Zhao X, He D W, Wang Y S, Hu Y, Fu C and Li X 2017 Chin. Phys. B 26 066102
[6] Barati A, Shamsipur M and Abdollahi H 2016 Sensor. Actuat. B-Chem. 230 289
[16] Yuwen L H, Zhou J J, Zhang Y Q, Zhang Q, Shang J Y, Luo Z M, Weng L X, Teng Z G and Wang L H 2016 Nanoscale 8 2720
[7] Jin L, Zhang Z, Tang A, Cong L and Shen Y 2016 Biosens. Bioelectron. 79 108
[17] Zhang S, Jia X F and Wang E 2016 Nanoscale. 8 15152
[8] Lan G Y, Huang C C and Chang H T 2010 Chem. Comm. 46 1257
[18] Ren X P, Ma Q, Fan H, Pang L Q, Zhang Y X, Yao Y, Ren X D and Liu S Z 2015 Chem.Commun. 51 15997
[9] Yao J, Zhang K, Zhu H, Ma F, Sun M, Yu H, Sun J and Wang S 2013 Anal. Chem. 85 6461
[19] Ren X P, Ren X D, Pang L Q, Zhang Y X, Ma Q, Fan H B and Liu S Z 2016 Int. J. Hydrogen. energ. 41 916
[10] Wang J, Zhou X, Ma H and Tao G 2011 Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 81 178
[20] Gu W, Yan Y H, Zhang C L, Ding C P, and Xian Y Z 2016 Acs. Appl. Mater. Inter. 8 11272
[11] Chen J, Li Y, Lv K, Zhong W, Wang H, Wu Z, Yi P and Jiang J 2016 Sensor. Actuat. B-Chem. 224 298
[21] Hariharan S and Karthikeyan B 2016 Rsc Advances 6 101770
[12] Wang F, Gu Z, Lei W, Wang W, Xia X and Hao Q 2014 Sensor. Actuat. B-Chem. 190 516
[22] Lö Z, Mahmood N, Tahir M, Pan L, Zhang X W and Zou J J 2016 Nanoscale 8 18250
[13] Gan Z X, Gui Q F, Shan Y, Pan P F, Zhang N and Zhang L F 2016 J. Appl. Phys. 120 104503
[23] Park S J, Sang W P, Qiu D, Kang J H, Song D Y and Kim E K 2017 J. Lumin. 183 62
[14] Niu Y, Jiao W, Wang R, Ding G and Huang Y 2016 J. Mater. Chem. A 4 8198
[24] Qiao W, Yan S, Song X, Zhang X, He X, Zhong W and Du Y 2015 Appl. Surf. SCI 359 130
[15] Zhao X, He D W, Wang Y S, Hu Y, Fu C and Li X 2017 Chin. Phys. B 26 066102
[25] Gu W, Yan Y, Cao X, Zhang C, Ding C and Xian Y 2016 J. Mater. Chem. B 4 27
[16] Yuwen L H, Zhou J J, Zhang Y Q, Zhang Q, Shang J Y, Luo Z M, Weng L X, Teng Z G and Wang L H 2016 Nanoscale 8 2720
[26] Haldar D, Dinda D and Saha S K 2016 J. Mater. Chem. C 4 6321
[17] Zhang S, Jia X F and Wang E 2016 Nanoscale. 8 15152
[27] Pei L, Tao S, Shu H and Song X 2015 Solid. State. Commun. 218 25
[18] Ren X P, Ma Q, Fan H, Pang L Q, Zhang Y X, Yao Y, Ren X D and Liu S Z 2015 Chem.Commun. 51 15997
[28] Zhou K, Zhang Y, Xia Z and Wei W 2016 Nanotechnology 27 275101
[19] Ren X P, Ren X D, Pang L Q, Zhang Y X, Ma Q, Fan H B and Liu S Z 2016 Int. J. Hydrogen. energ. 41 916
[29] Xu S, Li D and Wu P 2015 Adv. Funct. Mater. 25 1127
[20] Gu W, Yan Y H, Zhang C L, Ding C P, and Xian Y Z 2016 Acs. Appl. Mater. Inter. 8 11272
[30] Wang N, Wei F, Qi Y H, Li H X, Lu Xin, Zhao G Q and Xu Q 2014 Acs. Appl. Mater. Inter. 6 19888
[21] Hariharan S and Karthikeyan B 2016 Rsc Advances 6 101770
[31] Ren X, Pang L, Zhang Y, Ren X, Fan H and Liu S 2015 J. Mater. Chem. A 3 10693
[22] Lö Z, Mahmood N, Tahir M, Pan L, Zhang X W and Zou J J 2016 Nanoscale 8 18250
[32] Wang Z, Lin J, Gao J and Wang Q 2016 Mater. Chem. Phys. 178 82
[23] Park S J, Sang W P, Qiu D, Kang J H, Song D Y and Kim E K 2017 J. Lumin. 183 62
[33] Xua Y L, Niu X Y, Chen H L, Zhao S G and Chen X G 2017 Chin. Chem. Lett. 28 338
[24] Qiao W, Yan S, Song X, Zhang X, He X, Zhong W and Du Y 2015 Appl. Surf. SCI 359 130
[34] Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X and Zhang X 2015 Small 11 4158
[25] Gu W, Yan Y, Cao X, Zhang C, Ding C and Xian Y 2016 J. Mater. Chem. B 4 27
[35] Gopalakrishnan D, Damien D, Li B, Gullappalli H, Pillai V, Ajayan P and Shaijumon M 2015 Chem. Commun. 51 6293
[26] Haldar D, Dinda D and Saha S K 2016 J. Mater. Chem. C 4 6321
[36] Zhang X, Lai Z, Liu Z, Tan C, Huang Y, Li B, Zhao M, Xie L, Huang W and Zhang H 2015 Angew. Chem., Int. Ed. 54 5425
[27] Pei L, Tao S, Shu H and Song X 2015 Solid. State. Commun. 218 25
[37] Štengl V and Henych J 2013 Nanoscale 5 3387
[28] Zhou K, Zhang Y, Xia Z and Wei W 2016 Nanotechnology 27 275101
[38] Li B, Chen L, Zou H, Lei J, Luo H and Li N 2014 Nanoscale 6 9831
[29] Xu S, Li D and Wu P 2015 Adv. Funct. Mater. 25 1127
[39] Fahimi-Kashani N, Rashti A, Hormozi-Nezhad M R and Mahdavic V 2017 Anal. Methods 9 716
[30] Wang N, Wei F, Qi Y H, Li H X, Lu Xin, Zhao G Q and Xu Q 2014 Acs. Appl. Mater. Inter. 6 19888
[40] Li W Z, Li F, Wang X, Tang Y, Yang Y Y, Gao W B and Li R 2017 Appl. Surf. 401 190
[31] Ren X, Pang L, Zhang Y, Ren X, Fan H and Liu S 2015 J. Mater. Chem. A 3 10693
[41] Gu W, Yan Y, Zhang C, Ding C and Xian Y 2016 Acs. Appl. Mater. Interfaces 8 11272
[32] Wang Z, Lin J, Gao J and Wang Q 2016 Mater. Chem. Phys. 178 82
[42] Wang Y and Ni Y 2014 Anal. Chem. 86 7463
[33] Xua Y L, Niu X Y, Chen H L, Zhao S G and Chen X G 2017 Chin. Chem. Lett. 28 338
[43] Wang F, Gu Z, Lei W, Wang W, Xia X and Hao Q 2014 Sensor. Actuat B-Chem. 190 516
[34] Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X and Zhang X 2015 Small 11 4158
[35] Gopalakrishnan D, Damien D, Li B, Gullappalli H, Pillai V, Ajayan P and Shaijumon M 2015 Chem. Commun. 51 6293
[36] Zhang X, Lai Z, Liu Z, Tan C, Huang Y, Li B, Zhao M, Xie L, Huang W and Zhang H 2015 Angew. Chem., Int. Ed. 54 5425
[37] Štengl V and Henych J 2013 Nanoscale 5 3387
[38] Li B, Chen L, Zou H, Lei J, Luo H and Li N 2014 Nanoscale 6 9831
[39] Fahimi-Kashani N, Rashti A, Hormozi-Nezhad M R and Mahdavic V 2017 Anal. Methods 9 716
[40] Li W Z, Li F, Wang X, Tang Y, Yang Y Y, Gao W B and Li R 2017 Appl. Surf. 401 190
[41] Gu W, Yan Y, Zhang C, Ding C and Xian Y 2016 Acs. Appl. Mater. Interfaces 8 11272
[42] Wang Y and Ni Y 2014 Anal. Chem. 86 7463
[43] Wang F, Gu Z, Lei W, Wang W, Xia X and Hao Q 2014 Sensor. Actuat B-Chem. 190 516
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[8] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[9] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[10] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[11] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[12] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[13] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[14] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[15] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
No Suggested Reading articles found!