Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 026201    DOI: 10.1088/1674-1056/ac0cd2
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical study of novel B-C-O compoundswith non-diamond isoelectronic

Chao Liu(刘超)1,2,† and Pan Ying(应盼)3
1 College of Rare Earths, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China;
2 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China;
3 Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  Two novel non-isoelectronic with diamond (non-IED) B-C-O phases (tI16-B8C6O2 and mP16-B8C5O3) have been unmasked. The research of the phonon scattering spectra and the independent elastic constants under ambient pressure (AP) and high pressure (HP) proves the stability of these non-IED B-C-O phases. Respective to the common compounds, the research of the formation enthalpies and the relationship with pressure of all non-IED B-C-O phases suggests that HP technology performed in the diamond anvil cell (DAC) or large volume press (LVP) is an important technology for synthesis. Both tI16-B8C6O2 and tI12-B6C4O2 possess electrical conductivity. mP16-B8C5O3 is a small bandgap semiconductor with a 0.530 eV gap. For aP13-B6C2O5, mC20-B2CO2 and tI18-B4CO4 are all large gap semiconductors with gaps of 5.643 eV, 6.113 eV, and 7.105 eV, respectively. The study on the relationship between band gap values and pressure of these six non-IED B-C-O phases states that tI16-B8C6O2 and tI12-B6C4O2 maintain electrical conductivity, mC20-B2CO2 and tI18-B4CO4 have good bandgap stability and are less affected by pressure. The stress-strain simulation reveals that the max strain and stress of 0.4 GPa and 141.9 GPa respectively, can be sustained by tI16-B8C6O2. Studies on their mechanical properties shows that they all possess elasticity moduli and hard character. And pressure has an obvious effect on their mechanical properties, therein toughness of tI12-B6C4O2, aP13-B6C2O5, mC20-B2CO2 and tI18-B4CO4 all increases, and hardness of mP16-B8C5O3 continue to strengthen during the compression. With abundant hardness characteristics and tunable band gaps, extensive attention will be focused on the scientific research of non-IED B-C-O compounds.
Keywords:  stability analysis      pressure      formation enthalpy      property  
Received:  25 April 2021      Revised:  13 June 2021      Accepted manuscript online:  21 June 2021
PACS:  62.20.Qp (Friction, tribology, and hardness)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12064013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BAB214010), the Open Funds of the State Key Laboratory of Metastable Materials Science and Technology (Grant No. 201906), Ganzhou Science and Technology Project (Grant No. 202060), and the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology.
Corresponding Authors:  Chao Liu     E-mail:  liuchao198967@126.com

Cite this article: 

Chao Liu(刘超) and Pan Ying(应盼) Theoretical study of novel B-C-O compoundswith non-diamond isoelectronic 2022 Chin. Phys. B 31 026201

[1] Garvie L A J, Hubert H, Petuskey W T, McMillan P F and Buseck P R 1997 J. Solid State Chem. 133 365
[2] Hubert H, Garvie L A J, Devouard B and McMillan P F 1997 MRS Online Proceedings Library 499 315
[3] Bolotina N B, Dyuzheva T I and Bendeliani N A 2001 Crystallogr. Rep. 46 734
[4] Li Y, Li Q and Ma Y 2011 Europhys. Lett. 95 66006
[5] Zhang M, Yan H, Zheng B and Wei Q 2015 Sci. Rep. 5 15481
[6] Wang S, Oganov A R, Qian G, Zhu Q, Dong H, Dong X and Esfahani M M D 2016 Phys. Chem. Chem. Phys. 18 1859
[7] Liu C, Zhao Z, Luo K, Hu M, Ma M and He J 2016 Diamond Relat. Mater. 73 87
[8] Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S and Tian Y 2003 Phys. Rev. Lett. 91 015502
[9] Liu C, Zhao Z S, Luo K, Hu M, Ma M D and He J L 2017 Diamond Relat. Mater. 73 87
[10] Qiao L, Jin Z, Yan G, Li P, Hang L and Li L 2019 J. Solid State Chem. 270 642
[11] Liu C, Chen M W, He J L, Yu S S and Liang T X 2017 RSC Advances 7 52192
[12] Yan H Y, Zhang M G, Wei Q and Zhang Y 2018 Chem. Phys. Lett. 701 86
[13] Chen M, Liu C, Liu M, Kumar U P, Li Z, Liu L, He J and Liang T 2019 J. Mater. Res. 34 3617
[14] Zheng B, Zhang M and Wang C 2017 Materials 10 128
[15] Nuruzzaman M, Alam M A, Shah M A H, Parvin F and Zilani M A K 2017 Computational Condensed Matter 12 1
[16] Qiao L and Jin Z 2017 Materials 10 1413
[17] Liu C, Chen M W, Yang Y, Li J, Shao C C, Li P H, Liu L Y, He J L and Liang T X 2018 Comput. Mater. Sci. 150 259
[18] Wang Y C, Lv J A, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[19] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[20] Wang H, Wang Y C, Lv J, Li Q, Zhang L J and Ma Y M 2016 Comput. Mater. Sci. 112 406
[21] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[22] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227
[23] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172
[24] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Krist. Cryst. Mater. 220 567
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[28] Parlinski K, Li Z and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[29] Mouhat F and Coudert F 2014 Phys. Rev. B 90 224104
[30] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[31] Garza A J and Scuseria G E 2016 J. Phys. Chem. Lett. 7 4165
[32] Zhang M, Yan H and Wei Q 2019 J. Alloys Compd. 774 918
[33] Ozisik H B, Colakoglu K, Deligoz E and Ozisik H 2012 J. Mol. Model. 18 3101
[34] Tian Y J, Xu B and Zhao Z S 2012 International Journal of Refractory Metals and Hard Materials 33 93
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[3] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[4] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[5] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[6] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[9] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[10] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[11] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
[12] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[13] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[14] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[15] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
No Suggested Reading articles found!