Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 103102    DOI: 10.1088/1674-1056/aba097
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

First principles study of post-boron carbide phases with icosahedra broken

Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡
1 Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
Abstract  

Boron carbide (B4C) is a rhombic structure composed of icosahedra and atomic chains, which has an important application in armored materials. The application of B4C under super high pressure without failure is a hot spot of research. Previous studies have unmasked the essential cause of B4C failure, i.e., its structure will change subjected to impact, especially under the non-hydrostatic pressure and shear stress. However, the change of structure has not been clearly understood nor accurately determined. Here in this paper, we propose several B4C polymorphs including B4C high pressure phases with non-icosahedra, which are denoted as post-B4C and their structures are formed due to icosahedra broken and may be obtained through high pressure and high temperature (HPHT). The research of their physical properties indicates that these B4C polymorphs have outstanding mechanical and electrical properties. For instance, aP10, mC10, mP20, and oP10-B4C are conductive superhard materials. We hope that our research will enrich the cognition of high pressure structural deformation of B4C and broaden the application scope of B4C.

Keywords:  boron carbide      structural transformation      icosahedra broken      physical properties      first principles  
Received:  18 March 2020      Revised:  11 June 2020      Accepted manuscript online:  29 June 2020
PACS:  31.15.E-  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  91.60.Gf (High-pressure behavior)  
Corresponding Authors:  Corresponding author. E-mail: liuchao198967@126.com Corresponding author. E-mail: liang_tx@126.com   
About author: 
†Corresponding author. E-mail: liuchao198967@126.com
‡Corresponding author. E-mail: liang_tx@126.com
* Project supported by the National Natural Science Foundation of China (Grant Nos. 51871114 and 12064013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BAB214010), the Research Foundation of the Education Department of Jiangxi Province, China (Grant Nos. GJJ180433 and GJJ180477), the Open Funds of the State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, China (Grant No. 201906), the Ganzhou Science and Technology Innovation Project, China (Grant No. 201960), and the Jiangxi University of Science and Technology Scientific Research Starting Foundation, China (Grant No. jxxjbs17053).

Cite this article: 

Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡ First principles study of post-boron carbide phases with icosahedra broken 2020 Chin. Phys. B 29 103102

Fig. 1.  

Structural models for (a) po, (b) cP30, and (c) oP10.

Fig. 2.  

Curves of enthalpy (relative to cP30) versus pressure for various B4C polymorphs.

B G E ν Hv
po 239.44 196.75 463.34 0.177 30.97
aP10 215.39 225.17 500.95 0.112 44.80
mC10 275.33 271.75 613.43 0.129 47.94
mP2 278.80 250.26 577.87 0.155 40.60
oP1 261.14 252.88 573.52 0.134 44.59
tP15 215.21 214.36 482.79 0.126 40.95
hP20 290.18 102.36 274.78 0.342 7.45
cP20 230.97 147.31 364.46 0.237 18.92
cP30 284.03 109.17 290.32 0.330 8.60
Table 1.  

B, G, E, ν, and Hv (in units of GPa) for various B4C polymorphs at ambient pressure.

B G E ν Hv
aP10 704.36 361.12 925.24 0.281 27.84
mC10 728.72 456.61 1133.15 0.241 41.30
mP20 713.44 402.81 1017.02 0.262 33.57
oP10 723.43 399.79 1012.80 0.267 32.59
tP15 720.76 370.91 949.81 0.280 28.50
rH15 736.85 534.69 1291.65 0.208 54.57
Table 2.  

Values of B, G, E, ν, and Hv (in units of GPa) for various B4C polymorphs at high pressure of 150 GPa.

Fig. 3.  

Calculated band structure for (a) po-B4C: GGA and (b) HSE06, with horizontal red line, cyan line, and green line representing Fermi level, VMB, and CMB, respectively.

Fig. 4.  

Calculated band structures for B4C models based on HSE06: (a) aP10, (b) mC10, (c) mP20, (d) oP10, (e) tP15, (f) hP20, (g) cP20, and (h) cP30, with horizontal red line, cyan line, and green line representing Fermi level, VMB, and CMB, respectively.

Fig. 5.  

Calculated PDOSs for B4C models based on HSE06: (a) aP10, (b) mC10, (c) mP20, (d) oP10, (e) hP20, and (f) cP30, with red dash line denoting Fermi level.

Fig. 6.  

Orbits near Fermi-level of oP10-B4C at ambient pressure, viewing along axis (a) a and (b) c, respectively, with isovalue being 0.02 e/Å3.

[1]
Domnich V, Reynaud S, Haber R A, Chhowalla M 2011 J. Am. Ceram. Soc. 94 3605 DOI: 10.1111/jace.2011.94.issue-11
[2]
Liu M L, Liu C, Kumar U P, Chen M W 2020 Mater. Res. Exp. 7 015904
[3]
Vargas-Gonzalez L, Speyer R F, Campbell J 2010 Int. J. Appl. Ceram. Tec. 7 643 DOI: 10.1111/ijac.2010.7.issue-5
[4]
Wang C C, Song L L 2019 Chin. Phys. B 28 066201 DOI: 10.1088/1674-1056/28/6/066201
[5]
Moshtaghioun B M, Cumbrera-Hernández F L, Gómez-García D, Bernardi-Martín S, Domínguez-Rodríguez A, Monshi A, Abbasi M H 2013 J. Eur. Ceram. Soc. 33 361 DOI: 10.1016/j.jeurceramsoc.2012.08.028
[6]
Johnson G R, Holmquist T J 1999 J. Appl. Phys. 85 8060 DOI: 10.1063/1.370643
[7]
Zorzi J E, Perottoni C A, Jornada J A H 2005 Mater. Lett. 59 2932 DOI: 10.1016/j.matlet.2005.04.047
[8]
Chen M W, McCauley J W, Hemker K J 2003 Science 299 1563 DOI: 10.1126/science.1080819
[9]
Shen Y, Li G, An Q 2019 Scripta Mater. 162 306 DOI: 10.1016/j.scriptamat.2018.11.035
[10]
Orphal D L, Franzen R R, Charters A C, Menna T L, Piekutowski A J 1997 Int. J. Impact Eng. 19 15 DOI: 10.1016/S0734-743X(96)00004-8
[11]
Awasthi A P, Subhash G 2019 J. Appl. Phys. 125 215901 DOI: 10.1063/1.5091795
[12]
Yang X K, Coleman S P, Lasalvia J C, Goddard W A, An Q 2018 ACS Appl. Mater. Inter. 10 5072 DOI: 10.1021/acsami.7b16782
[13]
Vogler T, Reinhart W, Chhabildas L 2004 J. Appl. Phys. 95 4173 DOI: 10.1063/1.1686902
[14]
Zhang Y, Mashimo T, Uemura Y, Uchino M, Kodama M, Shibata K, Fukuoka K, Kikuchi M, Kobayashi T, Sekine T 2006 J. Appl. Phys. 100 113536 DOI: 10.1063/1.2399334
[15]
Fanchini G, McCauley J W, Chhowalla M 2006 Phys. Rev. Lett. 97 035502 DOI: 10.1103/PhysRevLett.97.035502
[16]
Mashimo T, Uchino M 1997 J. Appl. Phys. 81 7064 DOI: 10.1063/1.365229
[17]
Zhao S T, Kad B, Remington B A, LaSalvia J C, Wehrenberg C E, Behler K D, Meyers M A 2016 Proc. Natl. Acad. Sci. USA 113 12088 DOI: 10.1073/pnas.1604613113
[18]
Fujii T, Mori Y, Hyodo H, Kimura K 2010 J. Phys. Conf. Ser. 215 012011 DOI: 10.1088/1742-6596/215/1/012011
[19]
Guo J J, Zhang L, Fujita T, Goto T, Chen M W 2010 Phys. Rev. B 81 060102 DOI: 10.1103/PhysRevB.81.060102
[20]
Dera P, Manghnani M H, Hushur A, Hu Y, Tkachev S 2014 J. Solid State Chem. 215 85 DOI: 10.1016/j.jssc.2014.03.018
[21]
Kumar R S, Dandekar D, Leithe-Jasper A, Tanaka T, Xiao Y, Chow P, Nicol M F, Cornelius A L 2010 Diam. Relat. Mater. 19 530 DOI: 10.1016/j.diamond.2010.01.009
[22]
Yan X Q, Tang Z, Zhang L, Guo J J, Jin C Q, Zhang Y, Goto T, McCauley J, Chen M W 2009 Phys. Rev. Lett. 102 075505 DOI: 10.1103/PhysRevLett.102.075505
[23]
Domnich V, Gogotsi Y, Trenary M, Tanaka T 2002 Appl. Phys. Lett. 81 3783 DOI: 10.1063/1.1521580
[24]
Ge D, Domnich V, Juliano T, Stach E, Gogotsi Y 2004 Acta Mater. 52 3921 DOI: 10.1016/j.actamat.2004.05.007
[25]
Yan X Q, Li W J, Goto T, Chen M W 2006 Appl. Phys. Lett. 88 131905 DOI: 10.1063/1.2189826
[26]
Ghosh D, Subhash G, Lee C H, Yap Y K 2007 Appl. Phys. Lett. 91 061910 DOI: 10.1063/1.2768316
[27]
Lazzari R, Vast N, Besson J, Baroni S, Dal Corso A 1999 Phys. Rev. Lett. 83 3230 DOI: 10.1103/PhysRevLett.83.3230
[28]
Reddy K M, Liu P, Hirata A, Fujita T, Chen M W 2013 Nat. Commun. 4 2483 DOI: 10.1038/ncomms3483
[29]
Xie K Y, An Q, Sato T, Breen A J, Ringer S P, Goddard W A, Cairney J M, Hemker K J 2016 Proc. Natl. Acad. Sci. USA 113 12012 DOI: 10.1073/pnas.1607980113
[30]
An Q, Goddard W A, Cheng T 2014 Phys. Rev. Lett. 113 095501 DOI: 10.1103/PhysRevLett.113.095501
[31]
Li J, Xu S, Zhang J Y, Liu L S, Liu Q W, She W C, Fu Z Y 2017 Chin. Phys. B 26 047101 DOI: 10.1088/1674-1056/26/4/047101
[32]
Aryal S, Rulis P, Ching W Y 2011 Phys. Rev. B 84 184112 DOI: 10.1103/PhysRevB.84.184112
[33]
An Q, Goddard W A 2015 Phys. Rev. Lett. 115 105501 DOI: 10.1103/PhysRevLett.115.105501
[34]
Korotaev P, Pokatashkin P, Yanilkin A 2015 Modell. Simul. Mater. Sci. Eng. 24 015004 DOI: 10.1088/0965-0393/24/1/015004
[35]
Korotaev P, Pokatashkin P, Yanilkin A 2016 Comput. Mater. Sci. 121 106 DOI: 10.1016/j.commatsci.2016.04.041
[36]
Xinxin Z, Yu Z, Miao Z, Hanyu L, Yansun Y, Taimin C, Hui C 2017 J. Phys.: Condens. Matter 29 455401 DOI: 10.1088/1361-648X/aa8a08
[37]
Wang Y C, Lv J A, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116 DOI: 10.1103/PhysRevB.82.094116
[38]
Zhao Z S, Tian F, Dong X, Li Q, Wang Q Q, Wang H, Zhong X, Xu B, Yu D L, He J L, Wang H T, Ma Y M, Tian Y J 2012 J. Am. Chem. Soc. 134 12362 DOI: 10.1021/ja304380p
[39]
Zhang S S, He J L, Zhao Z S, Yu D L, Tian Y J 2019 Chin. Phys. B 28 106104 DOI: 10.1088/1674-1056/ab4179
[40]
Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567
[41]
Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406 DOI: 10.1103/PhysRevLett.100.136406
[42]
Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106 DOI: 10.1063/1.2404663
[43]
Adenwalla S, Welsch P, Harken A, Brand J, Sezer A, Robertson B W 2001 Appl. Phys. Lett. 79 4357 DOI: 10.1063/1.1426257
[44]
Vast N, Lazzari R, Besson J, Baroni S, Dal Corso A 2000 Comput. Mater. Sci. 17 127 DOI: 10.1016/S0927-0256(00)00009-4
[45]
Vast N, Sjakste J, Betranhandy E 2009 J. Phys. Conf. Ser. 176 012002 DOI: 10.1088/1742-6596/176/1/012002
[46]
Fujimori M, Nakata T, Nakayama T, Nishibori E, Kimura K, Takata M, Sakata M 1999 Phys. Rev. Lett. 82 4452 DOI: 10.1103/PhysRevLett.82.4452
[47]
Mouhat F, Coudert F 2014 Phys. Rev. B 90 224104 DOI: 10.1103/PhysRevB.90.224104
[48]
Oganov A R, Chen J, Gatti C, Ma Y, Ma Y, Glass C W, Liu Z, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863 DOI: 10.1038/nature07736
[49]
Zarechnaya E Y, Dubrovinsky L, Dubrovinskaia N, Miyajima N, Filinchuk Y, Chernyshov D, Dmitriev V 2008 Sci. Tech. Ad. Mater. 9 044209
[50]
Haussermann U, Simak S I, Ahuja R, Johansson B 2003 Phys. Rev. Lett. 90 065701 DOI: 10.1103/PhysRevLett.90.065701
[51]
Solozhenko V L, Kurakevych O O, Andrault D, Le Godec Y, Mezouar M 2009 Phys. Rev. Lett. 102 015506 DOI: 10.1103/PhysRevLett.102.015506
[52]
Mannix A J, Zhou X-F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R 2015 Science 350 1513 DOI: 10.1126/science.aad1080
[53]
Wu Z, Zhao E, Xiang H, Hao X, Liu X, Meng J 2007 Phys. Rev. B 76 054115 DOI: 10.1103/PhysRevB.76.054115
[54]
Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275 DOI: 10.1016/j.intermet.2011.03.026
[55]
Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. H. 33 93 DOI: 10.1016/j.ijrmhm.2012.02.021
[56]
Xiao H, Tahir-Kheli J, Goddard W A 2011 J. Phys. Chem. Lett. 2 212 DOI: 10.1021/jz101565j
[57]
Garza A J, Scuseria G E 2016 J. Phys. Chem. Lett. 7 4165 DOI: 10.1021/acs.jpclett.6b01807
[58]
Ektarawong A, Simak S, Hultman L, Birch J, Alling B 2014 Phys. Rev. B 90 024204 DOI: 10.1103/PhysRevB.90.024204
[59]
Dias R P, Silvera I F 2017 Science 355 715 DOI: 10.1126/science.aal1579
[1] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[2] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[3] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[4] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[7] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[8] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[9] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[10] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[11] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[12] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[13] Nanosheet-structured B4C with high hardness up to 42 GPa
Chang-Chun Wang(王常春), Le-Le Song(宋乐乐). Chin. Phys. B, 2019, 28(6): 066201.
[14] First principles study of interactions of oxygen-carbon-vacancy in bcc Fe
Yuan You(由园), Mu-Fu Yan(闫牧夫), Ji-Hong Yan(闫纪红), Gang Sun(孙刚), Chao Wang(王超). Chin. Phys. B, 2019, 28(10): 106102.
[15] First-principles study of structural, electronic, elastic, and thermal properties of Imm2-BC
Qiang Li(李强), Zhen-Ling Wang(王振玲), Yu-Cheng Yu(于玉城), Lan Ma(马兰), Shao-Li Yang(杨绍利), Hai-Bo Wang(王海波), Rui Zhang(张锐). Chin. Phys. B, 2019, 28(1): 013101.
No Suggested Reading articles found!