CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Investigation of the magnetoresistance in EuS/Nb:SrTiO3 junction |
Jia Lu(芦佳)1, Yu-Lin Gan(甘渝林)1, Yun-Lin Lei(雷蕴麟)2, Lei Yan(颜雷)1, †, and Hong Ding(丁洪)1,3,4$ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China 2 College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China 3 Department of Physics, University of Chinese Academy of Sciences, Beijing 100049, China 4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract EuS is one of typical ferromagnetic semiconductor using as spin filter in spintronic devices, and the doped one could be a good spin injector. Herein, we fabricate a spin-functional tunnel junction by epitaxially growing the ferromagnetic EuS film on Nb-doped SrTiO3. The improvement of Curie temperature up to 35 K is associated with indirect exchange through additional charge carriers at the interface of EuS/Nb:STO junction. Its magnetic field controlled current–voltage curves indicate the large magnetoresistance (MR) effect in EuS barriers as a highly spin-polarized injector. The negative MR is up to 60% in 10-nm EuS/Nb:STO at 4 T and 30 K. The MR is enhanced with increasing thickness of EuS barrier. The large negative MR effect over a wide temperature range makes this junction into a potential candidate for spintronic devices.
|
Received: 21 July 2020
Revised: 10 September 2020
Accepted manuscript online: 28 September 2020
|
Fund: the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB07000000), the National Key Research and Development Program of China (Grant No. 2016YFA0300600), and the Fund from the Beijing Municipal Science & Technology Commission (Grant No. Z191100007219012). |
Corresponding Authors:
†Corresponding author. E-mail: lyan@iphy.ac.cn
|
Cite this article:
Jia Lu(芦佳), Yu-Lin Gan(甘渝林), Yun-Lin Lei(雷蕴麟), Lei Yan(颜雷), and Hong Ding(丁洪)$ Investigation of the magnetoresistance in EuS/Nb:SrTiO3 junction 2020 Chin. Phys. B 29 117503
|
[1] |
|
[2] |
|
[3] |
R J S Jr. Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85 DOI: 10.1126/science.282.5386.85
|
[4] |
|
[5] |
|
[6] |
Senapati K, Blamire M G, Barber Z H 2011 Nat. Mater. 10 849 DOI: 10.1038/nmat3116
|
[7] |
McGuire T R, Argyle B E, Shafer M W, Smart J S 1962 Appl. Phys. Lett. 1 17 DOI: 10.1063/1.1777353
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
Santos T S, Moodera J S, Raman K V, Negusse E, Holroyd J, Dvorak J, Liberati M, Idzerda Y U, Arenholz E 2008 Phys. Rev. Lett. 101 147201 DOI: 10.1103/PhysRevLett.101.147201
|
[15] |
|
[16] |
Caspers C, Müller M, Gray A X, Kaiser A M, Gloskovskii A, Fadley C S, Drube W, Schneider C M 2011 Phys. Rev. B 84 205217 DOI: 10.1103/PhysRevB.84.205217
|
[17] |
Panguluri R P, Santos T S, Negusse E, Dvorak J, Idzerda Y, Moodera J S, Nadgorny B 2008 Phys. Rev. B 78 125307 DOI: 10.1103/PhysRevB.78.125307
|
[18] |
|
[19] |
Ren C, Trbovic J, Xiong P, von Molnár S 2005 Appl. Phys. Lett. 86 012501 DOI: 10.1063/1.1842857
|
[20] |
Guilaran I J, Read D E, Kallaher R L, Xiong P, von Molnár S, Stampe P A, Kennedy R J, Keller J 2003 Phys. Rev. B 68 144424 DOI: 10.1103/PhysRevB.68.144424
|
[21] |
|
[22] |
O’Mahony D, Smith C, Budtz-Jorgensen C, Venkatesan M, Lunney J G, McGilp J F, Coey J M D 2005 Thin Solid Films 488 200 DOI: 10.1016/j.tsf.2005.04.081
|
[23] |
Yang Q I, Zhao J, Zhang L, Dolev M, Fried A D, Marshall A F, Risbud S H, Kapitulnik A 2014 Appl. Phys. Lett. 104 082402 DOI: 10.1063/1.4866265
|
[24] |
Stachow-Wójcik A, Story T, Dobrowolski W, Arciszewska M, Gałąka R R, Kreijveld M W, Swüste C H W, Swagten H J M, de Jonge W J M, Twardowski A, Sipatov A Y 1999 Phys. Rev. B 60 15220 DOI: 10.1103/PhysRevB.60.15220
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
Lomicronpez-Mir L, Frontera C, Aramberri H, Bouzehouane K, Cisneros-Fernandez J, Bozzo B, Balcells L, Martinez B 2018 Sci. Rep. 8 861 DOI: 10.1038/s41598-017-19129-5
|
[31] |
|
[32] |
Thompson W A, Holtzberg F, McGuire T R, Petrich G 1972 Magn. Magn. Mater. AIP Conf. Proc. 5 827 DOI: 10.1063/1.2953924
|
[33] |
|
[34] |
Müller M, Schreiber R, Schneider C M 2011 J. Appl. Phys. 109 07C710 DOI: 10.1063/1.3549609
|
[35] |
Pan L F, Wen H Y, Huang L, Chen L, Deng H X, Xia J B, Wei Z M 2019 Chin. Phys. B 28 107504 DOI: 10.1088/1674-1056/ab3e45
|
[36] |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|