Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 108102    DOI: 10.1088/1674-1056/ab3f97
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of sintering temperature on luminescence properties of borosilicate matrix blue-green emitting color conversion glass ceramics

Qiao-Yu Zheng(郑巧瑜)1, Yang Li(李杨)2, Wen-Juan Wu(吴文娟)1, Ming-Ming Shi(石明明)1, Bo-Bo Yang(杨波波)1,3, Jun Zou(邹军)1,4
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China;
2 School of Material Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
3 Institute of Beyond Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China;
4 Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325024, China
Abstract  The color conversion glass ceramics which were made of borosilicate matrix co-doped (SrBaSm)Si2O2N2:(Eu3+Ce3+) blue-green phosphors were prepared by two-step method in co-sintering. The change in luminescence properties and the drift of chromaticity coordinates (CIE) of the (SrBaSm)Si2O2N2:(Eu3+Ce3+) blue-green phosphors and the color conversion glass ceramics were studied in the sintering temperature range from 600 ℃ to 800 ℃. The luminous intensity and internal quantum yield (QY) of the blue-green phosphors and glass ceramics decreased with the sintering temperature increasing. When the sintering temperature increased beyond 750 ℃, the phosphors and the color conversion glass ceramics almost had no peak in photoluminescence (PL) and excitation (PLE) spectra. The results showed that the blue-green phosphors had poor thermal stability at higher temperature. The lattice structure of the phosphors was destroyed by the glass matrix and the Ce3+ in the phosphors was oxidized to Ce4+, which further caused a decrease in luminescent properties of the color conversion glass ceramics.
Keywords:  (SrBaSm)Si2O2N2: (Eu3+Ce3+) phosphors      blue-green color conversion glass ceramic      luminescent intensity      thermal quenching effects      sintering temperature  
Received:  04 June 2019      Revised:  09 August 2019      Accepted manuscript online: 
PACS:  81.05.Kf (Glasses (including metallic glasses))  
  42.70.Ce (Glasses, quartz)  
Fund: Project supported by the Science and Technology Planning Project of Zhejiang Province, China (Grant No. 2018C01046) and Enterprise-funded Latitudinal Research Projects, China (Grant Nos. J2016-141, J2017-171, J2017-293, and J2017-243).
Corresponding Authors:  Yang Li, Wen-Juan Wu     E-mail:  liyang123@sit.edu.cn;wuwj0k@163.com

Cite this article: 

Qiao-Yu Zheng(郑巧瑜), Yang Li(李杨), Wen-Juan Wu(吴文娟), Ming-Ming Shi(石明明), Bo-Bo Yang(杨波波), Jun Zou(邹军) Effect of sintering temperature on luminescence properties of borosilicate matrix blue-green emitting color conversion glass ceramics 2019 Chin. Phys. B 28 108102

[44] Wade S A, Collins S F and Baxter G W 2003 J. Appl. Phys. 94 4743
[1] Fujita S S and Tanabe S 2015 Int. J. Appl. Glass Sci. 6 356
[45] Tian Y, Tian B N, Cui C E, Huang P, Wang L and Chen B J 2014 Opt. Lett. 39 4164
[2] Yang B B, Zou J, Wang F C, Zhang C Y, Xu J Y, Li L and Sun L H 2016 J. Mater. Sci.: Mater. Electron. 27 3376
[46] Shi L L, Li C Y and Su Q 2011 J. Fluoresc. 21 1461
[3] Peng Y, Li R X, Cheng H, Chen Z, Li H and Chen M X 2017 J. Alloys Compd. 693 279
[4] Xiang R, Liang X J, Xi Q Y, Yuan Z F, Chen C R and Xiang W D 2016 Ceram. Int. 42 19276
[5] Ye S, Xiao F, Pan Y X, Ma Y Y and Zhang Q Y 2010 Mater. Sci. & Eng.: R: Rep. 71 1
[6] Zhang X J, Si S C, Yu J B, Wang Z J, Zhang R H, Lei B F, Liu Y L, Zhuang J L, Hu C F, Cho Y J, Xie R J, Zhang H W, Tian Z F and Wang J 2019 J. Mater. Chem. C 7 354
[7] Zhang X J, Yu J B, Wang J, Lei B F, Liu Y L, Cho Y J, Xie R J, Zhang H W, Li Y R, Tian Z F, Li Y and Su Q 2017 ACS Photon. 4 986
[8] Boray P F, Gifford R and Rosenblood L 1989 J. Environ. Psychol. 9 297
[9] Veitch J A, Gifford R and Hine D W 1991 Environ. Psychol. 11 87
[10] Zhang X, Yu J, Wang J, Zhu C, Zhang J, Zou R, Lei B, Liu Y and Wu M 2015 ACS Appl. Mater. Interfaces 7 28122
[11] Fang M H, Ni C, Zhang X, Tsai Y T, Mahlik S, Lazarowska A, Grinberg M, Sheu H S, Lee J F, Cheng B M and Liu R S 2016 ACS Appl. Mater. Interfaces 45 30677
[12] Zhang X, Wang J, Huang L, Pan F, Chen Y, Lei B, Peng M and Wu M 2015 ACS Appl. Mater. Interfaces 7 10044
[13] Xiao Y, Xiao W G, Zhang L L, Hao Z D, Pan G H, Yang Y, Zhang X and Zhang J H 2018 J. Mater. Chem. C 6 12159
[14] Zhang X, Huang L, Pan F, Wu M, Wang J, Chen Y and Su Q 2014 ACS Appl. Mater. Interfaces 6 2709
[15] Yan C P, Zhuang W D, Liu R H, Xing X R, Liu Y H, Tian J H, Xu H B, Chen G T, Shao L L and Zhang X 2019 J. Alloys Compd. 783 855
[16] Shen Y, Zhuang W D, Liu Y H, He H Q and He T 2010 J. Rare Earths 28 289
[17] Liu Y H, Chen L, Zhou X F, Liu R H and Zhuang W D 2017 J. Solid State Chem. 246 145
[18] Wang J, Zhang H R, Lei B F, Dong H W, Liu Y L, Zheng M T and Xiao Y 2017 Sci. Adv. Mater. 9 661
[19] Piao X Q, Machida K, Horikawa T, Hanzawa H, Shimomura Y and Kijima N 2007 Chem. Mater. 19 4592
[20] Li S X, Liu X J, Mao R H, Huang Z R and Xie R J 2015 Rsc Adv. 5 76507
[21] Qiao Y M, Zhang X B, Ye X, Chen Y and Guo H 2009 J. Rare Earths 27 323
[22] Yu R J, Noh H M, Moon B K, Choi B C, Jeong J H, Jang K, Lee H S and Yi S S 2013 Ceram. Int. 39 9709
[23] Singh S, Khatkar S P, Boora P and Taxak V B 2014 J. Mater. Sci. 49 4773
[24] He X H, Lian N, Sun J H and Guan M Y 2009 J. Mater. Sci. 44 4763
[25] Huang Y X, Prots Y, Schnelle W and Kniep R 2007 Sci. Technol. Adv. Mater. 8 399
[26] Lee J S, Unithrattil S, Kim S, Lee I J, Lee H and Im W B 2013 Opt. Lett. 38 3298
[27] Han J Y, Im W B, Kim D, Cheong S H, Lee G Y and Jeon D Y 2012 J. Mater. Chem. 22 5374
[28] Park S J, Park H Y, Cho K H, Nahm S, Lee H G, Kim D H and Choi B H 2008 Mater. Res. Bull. 43 3580
[29] Cheng W, Ding D and Lei X 2016 Chin. Phys. Lett. 33 16102
[30] Ding D, Zhang Y Q and Xia L 2015 Chin. Phys. Lett. 32 106101
[31] Zhang X N, Mei X X, Ma X, Wang Y M, Qiang J B and Wang Y N 2015 Chin. Phys. Lett. 32 26801
[32] Liu Q and Guan P F 2017 J. Mater. Sci.: Mater. Electron. 28 16633
[33] Wang Z M, Zou J, Li Y, Zhang C Y, Shi M M, Yang B B, Zhou H Y, Liu Y M and Liu N X 2017 J. Mater. Sci.: Mater. Electron. 28 16633
[34] Zhou H Y, Zou J, Li Y, Wu W J, Shi M M, Yang B B and Wang Z M 2017 J. Non-Cryst. Solids 475 179
[35] Li Y, Hu L L, Yang B B, Shi M M and Zou J 2012 Opt. Lett. 37 3276
[36] Cheng W H, Tsai C C and Wang J 2011 Proc. SPIE-Int. Soc. For Opt. Eng. 8123 pp. 535–563
[37] Lee Y K, Lee J S, Heo J, Im W B and Chung W J 2012 Opt. Lett. 37 3276
[38] Setlur A A, Heward W J, Gao Y, Srivastava A M, Chandran G and Shankar M V 2006 Chem. Mater. 18 3314
[39] Gedam S C, Dhoble S J and Moharil S V 2007 Eur. Phys. J. Appl. Phys. 37 73
[40] He H, Li J F, Lai X F, Li P, Xiao Y F, Zhang P C and Zhang W T 2018 Opt. Mater. 84 52
[41] Zhao L, Cai J J, Hu F F, Li X Y, Cao Z M, Wei X T, Chen Y H, Yin M and Duan C K 2017 Rsc Adv. 7 7198
[42] Bu Y and Yan X 2017 J. Lumin. 190 50
[43] Blasse G and Bril A 1967 J. Chem. Phys. 47 1920
[44] Wade S A, Collins S F and Baxter G W 2003 J. Appl. Phys. 94 4743
[45] Tian Y, Tian B N, Cui C E, Huang P, Wang L and Chen B J 2014 Opt. Lett. 39 4164
[46] Shi L L, Li C Y and Su Q 2011 J. Fluoresc. 21 1461
[1] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[2] Experimental optimum design and luminescence properties of NaY(Gd)(MoO4)2: Er3+ phosphors
Jia-Shi Sun(孙佳石), Sai Xu(徐赛), Shu-Wei Li(李树伟), Lin-Lin Shi(石琳琳), Zi-Hui Zhai(翟梓会), Bao-Jiu Chen(陈宝玖). Chin. Phys. B, 2016, 25(6): 063301.
[3] Densification and lithium ion conductivity of garnet-type Li7-xLa3Zr2-xTaxO12 (x=0.25) solid electrolytes
Cao Yang (曹阳), Li Yi-Qiu (李忆秋), Guo Xiang-Xin (郭向欣). Chin. Phys. B, 2013, 22(7): 078201.
[4] Effect of fabrication conditions on the properties of indium tin oxide powders
Xie Wei(谢卫) . Chin. Phys. B, 2008, 17(7): 2683-2688.
No Suggested Reading articles found!