INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of sintering temperature on luminescence properties of borosilicate matrix blue-green emitting color conversion glass ceramics |
Qiao-Yu Zheng(郑巧瑜)1, Yang Li(李杨)2, Wen-Juan Wu(吴文娟)1, Ming-Ming Shi(石明明)1, Bo-Bo Yang(杨波波)1,3, Jun Zou(邹军)1,4 |
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China; 2 School of Material Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; 3 Institute of Beyond Lighting, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; 4 Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325024, China |
|
|
Abstract The color conversion glass ceramics which were made of borosilicate matrix co-doped (SrBaSm)Si2O2N2:(Eu3+Ce3+) blue-green phosphors were prepared by two-step method in co-sintering. The change in luminescence properties and the drift of chromaticity coordinates (CIE) of the (SrBaSm)Si2O2N2:(Eu3+Ce3+) blue-green phosphors and the color conversion glass ceramics were studied in the sintering temperature range from 600 ℃ to 800 ℃. The luminous intensity and internal quantum yield (QY) of the blue-green phosphors and glass ceramics decreased with the sintering temperature increasing. When the sintering temperature increased beyond 750 ℃, the phosphors and the color conversion glass ceramics almost had no peak in photoluminescence (PL) and excitation (PLE) spectra. The results showed that the blue-green phosphors had poor thermal stability at higher temperature. The lattice structure of the phosphors was destroyed by the glass matrix and the Ce3+ in the phosphors was oxidized to Ce4+, which further caused a decrease in luminescent properties of the color conversion glass ceramics.
|
Received: 04 June 2019
Revised: 09 August 2019
Accepted manuscript online:
|
PACS:
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
42.70.Ce
|
(Glasses, quartz)
|
|
Fund: Project supported by the Science and Technology Planning Project of Zhejiang Province, China (Grant No. 2018C01046) and Enterprise-funded Latitudinal Research Projects, China (Grant Nos. J2016-141, J2017-171, J2017-293, and J2017-243). |
Corresponding Authors:
Yang Li, Wen-Juan Wu
E-mail: liyang123@sit.edu.cn;wuwj0k@163.com
|
Cite this article:
Qiao-Yu Zheng(郑巧瑜), Yang Li(李杨), Wen-Juan Wu(吴文娟), Ming-Ming Shi(石明明), Bo-Bo Yang(杨波波), Jun Zou(邹军) Effect of sintering temperature on luminescence properties of borosilicate matrix blue-green emitting color conversion glass ceramics 2019 Chin. Phys. B 28 108102
|
[44] |
Wade S A, Collins S F and Baxter G W 2003 J. Appl. Phys. 94 4743
|
[1] |
Fujita S S and Tanabe S 2015 Int. J. Appl. Glass Sci. 6 356
|
[45] |
Tian Y, Tian B N, Cui C E, Huang P, Wang L and Chen B J 2014 Opt. Lett. 39 4164
|
[2] |
Yang B B, Zou J, Wang F C, Zhang C Y, Xu J Y, Li L and Sun L H 2016 J. Mater. Sci.: Mater. Electron. 27 3376
|
[46] |
Shi L L, Li C Y and Su Q 2011 J. Fluoresc. 21 1461
|
[3] |
Peng Y, Li R X, Cheng H, Chen Z, Li H and Chen M X 2017 J. Alloys Compd. 693 279
|
[4] |
Xiang R, Liang X J, Xi Q Y, Yuan Z F, Chen C R and Xiang W D 2016 Ceram. Int. 42 19276
|
[5] |
Ye S, Xiao F, Pan Y X, Ma Y Y and Zhang Q Y 2010 Mater. Sci. & Eng.: R: Rep. 71 1
|
[6] |
Zhang X J, Si S C, Yu J B, Wang Z J, Zhang R H, Lei B F, Liu Y L, Zhuang J L, Hu C F, Cho Y J, Xie R J, Zhang H W, Tian Z F and Wang J 2019 J. Mater. Chem. C 7 354
|
[7] |
Zhang X J, Yu J B, Wang J, Lei B F, Liu Y L, Cho Y J, Xie R J, Zhang H W, Li Y R, Tian Z F, Li Y and Su Q 2017 ACS Photon. 4 986
|
[8] |
Boray P F, Gifford R and Rosenblood L 1989 J. Environ. Psychol. 9 297
|
[9] |
Veitch J A, Gifford R and Hine D W 1991 Environ. Psychol. 11 87
|
[10] |
Zhang X, Yu J, Wang J, Zhu C, Zhang J, Zou R, Lei B, Liu Y and Wu M 2015 ACS Appl. Mater. Interfaces 7 28122
|
[11] |
Fang M H, Ni C, Zhang X, Tsai Y T, Mahlik S, Lazarowska A, Grinberg M, Sheu H S, Lee J F, Cheng B M and Liu R S 2016 ACS Appl. Mater. Interfaces 45 30677
|
[12] |
Zhang X, Wang J, Huang L, Pan F, Chen Y, Lei B, Peng M and Wu M 2015 ACS Appl. Mater. Interfaces 7 10044
|
[13] |
Xiao Y, Xiao W G, Zhang L L, Hao Z D, Pan G H, Yang Y, Zhang X and Zhang J H 2018 J. Mater. Chem. C 6 12159
|
[14] |
Zhang X, Huang L, Pan F, Wu M, Wang J, Chen Y and Su Q 2014 ACS Appl. Mater. Interfaces 6 2709
|
[15] |
Yan C P, Zhuang W D, Liu R H, Xing X R, Liu Y H, Tian J H, Xu H B, Chen G T, Shao L L and Zhang X 2019 J. Alloys Compd. 783 855
|
[16] |
Shen Y, Zhuang W D, Liu Y H, He H Q and He T 2010 J. Rare Earths 28 289
|
[17] |
Liu Y H, Chen L, Zhou X F, Liu R H and Zhuang W D 2017 J. Solid State Chem. 246 145
|
[18] |
Wang J, Zhang H R, Lei B F, Dong H W, Liu Y L, Zheng M T and Xiao Y 2017 Sci. Adv. Mater. 9 661
|
[19] |
Piao X Q, Machida K, Horikawa T, Hanzawa H, Shimomura Y and Kijima N 2007 Chem. Mater. 19 4592
|
[20] |
Li S X, Liu X J, Mao R H, Huang Z R and Xie R J 2015 Rsc Adv. 5 76507
|
[21] |
Qiao Y M, Zhang X B, Ye X, Chen Y and Guo H 2009 J. Rare Earths 27 323
|
[22] |
Yu R J, Noh H M, Moon B K, Choi B C, Jeong J H, Jang K, Lee H S and Yi S S 2013 Ceram. Int. 39 9709
|
[23] |
Singh S, Khatkar S P, Boora P and Taxak V B 2014 J. Mater. Sci. 49 4773
|
[24] |
He X H, Lian N, Sun J H and Guan M Y 2009 J. Mater. Sci. 44 4763
|
[25] |
Huang Y X, Prots Y, Schnelle W and Kniep R 2007 Sci. Technol. Adv. Mater. 8 399
|
[26] |
Lee J S, Unithrattil S, Kim S, Lee I J, Lee H and Im W B 2013 Opt. Lett. 38 3298
|
[27] |
Han J Y, Im W B, Kim D, Cheong S H, Lee G Y and Jeon D Y 2012 J. Mater. Chem. 22 5374
|
[28] |
Park S J, Park H Y, Cho K H, Nahm S, Lee H G, Kim D H and Choi B H 2008 Mater. Res. Bull. 43 3580
|
[29] |
Cheng W, Ding D and Lei X 2016 Chin. Phys. Lett. 33 16102
|
[30] |
Ding D, Zhang Y Q and Xia L 2015 Chin. Phys. Lett. 32 106101
|
[31] |
Zhang X N, Mei X X, Ma X, Wang Y M, Qiang J B and Wang Y N 2015 Chin. Phys. Lett. 32 26801
|
[32] |
Liu Q and Guan P F 2017 J. Mater. Sci.: Mater. Electron. 28 16633
|
[33] |
Wang Z M, Zou J, Li Y, Zhang C Y, Shi M M, Yang B B, Zhou H Y, Liu Y M and Liu N X 2017 J. Mater. Sci.: Mater. Electron. 28 16633
|
[34] |
Zhou H Y, Zou J, Li Y, Wu W J, Shi M M, Yang B B and Wang Z M 2017 J. Non-Cryst. Solids 475 179
|
[35] |
Li Y, Hu L L, Yang B B, Shi M M and Zou J 2012 Opt. Lett. 37 3276
|
[36] |
Cheng W H, Tsai C C and Wang J 2011 Proc. SPIE-Int. Soc. For Opt. Eng. 8123 pp. 535–563
|
[37] |
Lee Y K, Lee J S, Heo J, Im W B and Chung W J 2012 Opt. Lett. 37 3276
|
[38] |
Setlur A A, Heward W J, Gao Y, Srivastava A M, Chandran G and Shankar M V 2006 Chem. Mater. 18 3314
|
[39] |
Gedam S C, Dhoble S J and Moharil S V 2007 Eur. Phys. J. Appl. Phys. 37 73
|
[40] |
He H, Li J F, Lai X F, Li P, Xiao Y F, Zhang P C and Zhang W T 2018 Opt. Mater. 84 52
|
[41] |
Zhao L, Cai J J, Hu F F, Li X Y, Cao Z M, Wei X T, Chen Y H, Yin M and Duan C K 2017 Rsc Adv. 7 7198
|
[42] |
Bu Y and Yan X 2017 J. Lumin. 190 50
|
[43] |
Blasse G and Bril A 1967 J. Chem. Phys. 47 1920
|
[44] |
Wade S A, Collins S F and Baxter G W 2003 J. Appl. Phys. 94 4743
|
[45] |
Tian Y, Tian B N, Cui C E, Huang P, Wang L and Chen B J 2014 Opt. Lett. 39 4164
|
[46] |
Shi L L, Li C Y and Su Q 2011 J. Fluoresc. 21 1461
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|