|
|
Comparative investigation of freezing phenomena for quantum coherence and correlations |
Lian-Wu Yang(杨连武)1, Wei Han(韩伟)2, Yun-Jie Xia(夏云杰)2 |
1. Shandong Provincial Key Laboratory of Computation Theory Physics, Department of Physics and Information Engineering, Jining University, Qufu 273155, China; 2. Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China |
|
|
Abstract We show that the freezing phenomenon, exhibited by a specific class of two-qubit state under local nondissipative decoherent evolutions, is a common feature of the relative entropy measure of quantum coherence and correlation. All those measurement outcomes, preserve a constant value in the considered noisy channels, but the condition, property and mechanism of the freezing phenomenon for quantum coherence are different from those of the quantum correlation.
|
Received: 15 November 2017
Revised: 15 January 2018
Accepted manuscript online:
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675115 and 11304179). |
Corresponding Authors:
Lian-Wu Yang
E-mail: wlyanglw@163.com
|
Cite this article:
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰) Comparative investigation of freezing phenomena for quantum coherence and correlations 2018 Chin. Phys. B 27 040302
|
[1] |
Nielsen M and Chuang I 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
|
[2] |
Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
|
[3] |
Dobrzański R D and Maccone L 2014 Phys. Rev. Lett. 113 250801
|
[4] |
Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
|
[5] |
Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
|
[6] |
Asbóth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett. 94 173602
|
[7] |
Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
|
[8] |
Ford L H 1978 Proc. R. Soc. A 364 227
|
[9] |
Correa L A, Palao J P, Alonso D and Adesso G 2014 Sci. Rep. 4 3949
|
[10] |
Ro å nagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602
|
[11] |
Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
|
[12] |
Aberg J 2014 Phys. Rev. Lett. 113 150402
|
[13] |
Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
|
[14] |
Rebentrost P, Mohseni M and Aspuru G A 2009 J. Phys. Chem. B 113 9942
|
[15] |
Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885
|
[16] |
Huelga S F and Plenio M B 2013 Contemp. Phys. 54 181
|
[17] |
Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
|
[18] |
Levi F and Mintert F 2014 New J. Phys. 16 033007
|
[19] |
Marvian I and Spekkens R W 2013 New J. Phys. 15 033001
|
[20] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[21] |
Luo S L 2008 Phys. Rev. A 77 022301
|
[22] |
Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109
|
[23] |
Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
|
[24] |
Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
|
[25] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[26] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[27] |
Jozsa R and Linden N 2003 Proc. R. Soc. Lon. A 459 2011
|
[28] |
Lanyon B P, Barbieri M, Almeida M P andWhite A G 2008 Phys. Rev. Lett. 101 200501
|
[29] |
Aaronson B, Franco R and Adesso G 2013 Phys. Rev. A 88 012120
|
[30] |
Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
|
[31] |
You B and Cen L X 2012 Phys. Rev. A 86 012102
|
[32] |
Cianciaruso M, Bromley T R, Roga W, Franco L R and Adesso G 2015 Sci. Rep. 5 10177
|
[33] |
Hu M L and Fan H 2012 Ann. Phys. 327 851
|
[34] |
Mazzola L, Piilo J and Maniscalco S 2011 Int. J. Quantum Inf. 09 981
|
[35] |
Franco L R, Bellomo B, Andersson E and Compagno G 2012 Phys. Rev. A 85 032318
|
[36] |
Mannone M, Franco L R and Compagno G 2013 Phys. Scr. 153 014047
|
[37] |
Haikka P, Johnson T H and Maniscalco S 2013 Phys. Rev. A 87 010103
|
[38] |
Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
|
[39] |
Yu X D, Zhang D J, Liu C and Tong D 2016 Phys. Rev. A 93 060303
|
[40] |
Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
|
[41] |
Hu M L and Fan H 2016 Sci. Rep. 6 29260
|
[42] |
Yang L W and Xia Y J 2016 Chin. Phys. B 25 110303
|
[43] |
Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922
|
[44] |
Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
|
[45] |
Chuan T K, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329
|
[46] |
Gao D Y, Gao Q and Xia Y J 2017 Chin. Phys. B 26 110303
|
[47] |
Werner R F 1989 Phys. Rev. A 40 4277
|
[48] |
Hu M L and Fan H 2017 Phys. Rev. A 95 052106
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|