Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 040302    DOI: 10.1088/1674-1056/27/4/040302
GENERAL Prev   Next  

Comparative investigation of freezing phenomena for quantum coherence and correlations

Lian-Wu Yang(杨连武)1, Wei Han(韩伟)2, Yun-Jie Xia(夏云杰)2
1. Shandong Provincial Key Laboratory of Computation Theory Physics, Department of Physics and Information Engineering, Jining University, Qufu 273155, China;
2. Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China
Abstract  We show that the freezing phenomenon, exhibited by a specific class of two-qubit state under local nondissipative decoherent evolutions, is a common feature of the relative entropy measure of quantum coherence and correlation. All those measurement outcomes, preserve a constant value in the considered noisy channels, but the condition, property and mechanism of the freezing phenomenon for quantum coherence are different from those of the quantum correlation.
Keywords:  freezing phenomenon      quantum coherence      quantum discord  
Received:  15 November 2017      Revised:  15 January 2018      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675115 and 11304179).
Corresponding Authors:  Lian-Wu Yang     E-mail:  wlyanglw@163.com

Cite this article: 

Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰) Comparative investigation of freezing phenomena for quantum coherence and correlations 2018 Chin. Phys. B 27 040302

[1] Nielsen M and Chuang I 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[2] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[3] Dobrzański R D and Maccone L 2014 Phys. Rev. Lett. 113 250801
[4] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[5] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[6] Asbóth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett. 94 173602
[7] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[8] Ford L H 1978 Proc. R. Soc. A 364 227
[9] Correa L A, Palao J P, Alonso D and Adesso G 2014 Sci. Rep. 4 3949
[10] Ro å nagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602
[11] Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
[12] Aberg J 2014 Phys. Rev. Lett. 113 150402
[13] Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
[14] Rebentrost P, Mohseni M and Aspuru G A 2009 J. Phys. Chem. B 113 9942
[15] Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885
[16] Huelga S F and Plenio M B 2013 Contemp. Phys. 54 181
[17] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[18] Levi F and Mintert F 2014 New J. Phys. 16 033007
[19] Marvian I and Spekkens R W 2013 New J. Phys. 15 033001
[20] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[21] Luo S L 2008 Phys. Rev. A 77 022301
[22] Rulli C C and Sarandy M S 2011 Phys. Rev. A 84 042109
[23] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[24] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[25] Ekert A K 1991 Phys. Rev. Lett. 67 661
[26] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[27] Jozsa R and Linden N 2003 Proc. R. Soc. Lon. A 459 2011
[28] Lanyon B P, Barbieri M, Almeida M P andWhite A G 2008 Phys. Rev. Lett. 101 200501
[29] Aaronson B, Franco R and Adesso G 2013 Phys. Rev. A 88 012120
[30] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[31] You B and Cen L X 2012 Phys. Rev. A 86 012102
[32] Cianciaruso M, Bromley T R, Roga W, Franco L R and Adesso G 2015 Sci. Rep. 5 10177
[33] Hu M L and Fan H 2012 Ann. Phys. 327 851
[34] Mazzola L, Piilo J and Maniscalco S 2011 Int. J. Quantum Inf. 09 981
[35] Franco L R, Bellomo B, Andersson E and Compagno G 2012 Phys. Rev. A 85 032318
[36] Mannone M, Franco L R and Compagno G 2013 Phys. Scr. 153 014047
[37] Haikka P, Johnson T H and Maniscalco S 2013 Phys. Rev. A 87 010103
[38] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[39] Yu X D, Zhang D J, Liu C and Tong D 2016 Phys. Rev. A 93 060303
[40] Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
[41] Hu M L and Fan H 2016 Sci. Rep. 6 29260
[42] Yang L W and Xia Y J 2016 Chin. Phys. B 25 110303
[43] Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922
[44] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[45] Chuan T K, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329
[46] Gao D Y, Gao Q and Xia Y J 2017 Chin. Phys. B 26 110303
[47] Werner R F 1989 Phys. Rev. A 40 4277
[48] Hu M L and Fan H 2017 Phys. Rev. A 95 052106
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[4] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[5] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[8] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[9] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[10] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[11] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[12] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[13] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[14] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[15] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
No Suggested Reading articles found!