Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037503    DOI: 10.1088/1674-1056/27/3/037503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Formation of unusual Cr5+ charge state in CaCr0.5Fe0.5O3 perovskite

Jian-Hong Dai(戴建洪)1,2, Qing Zhao(赵庆)1, Qian Sun(孙倩)1, Shuo Zhang(张硕)3, Xiao Wang(王潇)1,2, Xu-Dong Shen(申旭东)1,2, Zhe-Hong Liu(刘哲宏)1,2, Xi Shen(沈希)1,2, Ri-Cheng Yu(禹日成)1, Ting-Shan Chan(詹丁山)4, Lun-Xiong Li(李论雄)5, Guang-Hui Zhou(周光辉)6, Yi-feng Yang(杨义峰)1,2, Chang-Qing Jin(靳常青)1,2, You-Wen Long(龙有文)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201203, China;
4 "National" Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan, China;
5 Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China;
6 Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications of Hunan, Hunan Normal University, Changsha 410081, China
Abstract  

A new oxide CaCr0.5Fe0.5O3 was prepared under high pressure and temperature conditions. It crystallizes in a B-site disordered Pbnm perovskite structure. The charge combination is determined to be Cr5+/Fe3+ with the presence of unusual Cr5+ state in octahedral coordination, although Cr4+ and Fe4+ occur in the related perovskites CaCrO3 and CaFeO3. The randomly distributed Cr5+ and Fe3+ spins lead to short-range ferromagnetic coupling, whereas an antiferromagnetic phase transition takes place near 50 K due to the Fe3+-O-Fe3+ interaction. In spite of the B-site Cr5+/Fe3+ disorder, the compound exhibits electrical insulating behavior. First-principles calculations further demonstrate the formation of CaCr0.55+Fe0.53+O3 charge combination, and the electron correlation effect of Fe3+ plays an important role for the insulting ground state. CaCr0.5Fe0.5O3 provides the first Cr5+ perovskite system with octahedral coordination, opening a new avenue to explore novel transition-metal oxides with exotic charge states.

Keywords:  high pressure synthesis      perovskite      valence state  
Received:  30 January 2018      Revised:  09 February 2018      Accepted manuscript online: 
PACS:  75.10.-b (General theory and models of magnetic ordering)  
  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
  62.50.-p (High-pressure effects in solids and liquids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574378, 51772324, and 61404052), the National Basic Research Program of China (Grant No. 2014CB921500), and the Chinese Academy of Sciences (Grant Nos. YZ201555, QYZDB-SSW-SLH013, GJHZ1773, and XDB07030300).

Corresponding Authors:  Yi-feng Yang, You-Wen Long     E-mail:  yifeng@iphy.ac.cn;ywlong@iphy.ac.cn

Cite this article: 

Jian-Hong Dai(戴建洪), Qing Zhao(赵庆), Qian Sun(孙倩), Shuo Zhang(张硕), Xiao Wang(王潇), Xu-Dong Shen(申旭东), Zhe-Hong Liu(刘哲宏), Xi Shen(沈希), Ri-Cheng Yu(禹日成), Ting-Shan Chan(詹丁山), Lun-Xiong Li(李论雄), Guang-Hui Zhou(周光辉), Yi-feng Yang(杨义峰), Chang-Qing Jin(靳常青), You-Wen Long(龙有文) Formation of unusual Cr5+ charge state in CaCr0.5Fe0.5O3 perovskite 2018 Chin. Phys. B 27 037503

[1] Ovsyannikov S V, Bykov M, Bykova E, Kozlenko D P, Tsirlin A A, Karkin A E, Shchennikov V V, Kichanov S E, Gou H Y, Abakumov A M, Egoavil R, Verbeeck J, McCammon C, Dyadkin V, Chernyshov D, van Smaalen S and Dubrovinsky L S 2016 Nat. Chem. 8 501
[2] Lavina B, Dera P, Kim E, Meng Y, Downs R T, Weck P F, Sutton S R and Zhao Y 2011 Proc. Natl. Acad. Sci. USA 108 17281
[3] Long Y W, Hayashi N, Saito T, Azuma M, Muranaka S and Shimakawa Y 2009 Nature 458 07816
[4] Long Y W, Kawakami T W, Chen T, Saito T, Watanuki T, Nakakura Y, Liu Q Q, Jin C Q and Shimakawa Y 2012 Chem. Mater. 24 2235
[5] Long Y W and Shimakawa Y 2010 New J. Phys. 12 063029
[6] Takano M, Nakanishi N, Takeda Y, Naka S and Takada T 1977 Mat. Res. Bull. 12 923
[7] Woodward P M, Cox D E, Moshopoulou E, Sleight A W and Morimoto S 2000 Phys. Rev. B 62 844
[8] Kawasaki S, Takano M and Takeda Y 1996 J. Solid State Chem. 121 174
[9] Long Y W, Kaneko Y, Ishiwata S, Tokunaga Y, Matsuda T, Wadati H, Tanaka Y, Shin S, Tokura Y and Taguchi Y 2012 Phys. Rev. B 86 064436
[10] Seki H, Hosaka Y, Saito T, Mizumaki M and Shimakawa Y 2016 Angew. Chem. Int. Ed. 55 1360
[11] Zhou, J. S, Jin C Q, Long Y W, Yang L X and Goodenough J B 2006 Phys. Rev. Lett. 96 046408
[12] Long Y W, Yang L, Lv Y, Liu Q, Jin C, Zhou J and Goodenough J B 2011 J. Phys.:Condens. Matter. 23 355601
[13] Komarek C, Möller T, Isobe M, Drees Y, Ulbrich H, Azuma M, Fernández-Díaz M T, Senyshyn A, Hoelzel M, André G, Ueda Y, Grüninger M and Braden M 2011 Phys. Rev. B 84 125114
[14] Ortega-San-Martin L, Williams A J, Rodgers J, Attfield J P, Heymann G and Huppertz H 2007 Phys. Rev. Lett. 99 255701
[15] Lee K W and Pickett W E 2009 Phys. Rev. B 80 125133
[16] Arévalo-Lópezá M, Dos santos-García A J and Alario-Franco M á 2009 Inorg. Chem. 48 5434
[17] Cheng J, Kweon K E, Larregola S A, Ding Y, Shirako Y, Marshall L G, Li Z Y, Li X, dos Santos A M, Suchomel M R, Matsubayashi K, Uwatoko Y, Hwang G S, Goodenough J B and Zhou J S 2015 Proc. Natl. Acad. Sci. USA 112 1670
[18] Yu, R, Hojo H, Watanuki T, Mizumaki M, Mizokawa T, Oka K, Kim H, Machida A, Sakaki K, Nakamura Y, Agui A, Mori D, Inaguma Y, Schlipf M, Rushchanskii K Z, Ležaić M, Matsuda M, Ma J, Calder S, Isobe M, Ikuhara Y and Azuma M 2015 J. Am. Chem. Soc. 137 12719
[19] Jiménez E, Isasi J and Sáez-Puche R J 2000 Alloy. Compd. 312 53
[20] Tsirlin A A, Rabie M G, Efimenko A, Hu Z, Saez-Puche R and Tjeng L H 2014 Phys. Rev. B 90 085106
[21] Sáez-Puche R, Jiménez E, Isasi J, Fernández-Díaz M T and García-Muñoz J L 2003 J. Solid State Chem. 171 161
[22] Long Y W, Liu Q, Lv Y, Yu R and Jin C 2011 Phys. Rev. B 83 024416
[23] Long Y W, Yang L X, Yu Y, Li F Y, Yu R C and Jin C Q 2007 Phys. Rev. B 75 104402
[24] Bhobe P A, Chainani A, Taguchi M, Eguchi R, Matsunami M, Ohtsuki T, Ishizaka K, Okawa M, Oura M, Senba Y, Ohashi H, Isobe M, Ueda Y and Shin S 2011 Phys. Rev. B 83 165132
[25] Takano M, Nasu S, Abe T, Yamamoto K, Endo S, Takeda Y and Goodenough J B 1991 Phys. Rev. Lett. 67 3267
[26] Larson A C and Von Dreele R B Report No. LAUR 86-748 (Los Alamos National Laboratory Los Alamos NM 1994)
[27] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2013 WIEN2K:An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universitat Wien, Wien, Austria 2013).
[28] Lee K W and Ahn K H 2012 Phys. Rev. B 85 224404
[29] Croft M, Sills D, Greenblatt M, Lee C, Cheong S W, Ramanujachary K V and Tran D 1997 Phys. Rev. B 55 8726
[30] Poltavets V V, Croft M and Greenblatt M 2006 Phys. Rev. B 74 125103
[31] Goodenough, J. B 1955 Phys. Rev. 100 564
[32] Kanamori J 1959 J. Phys. Chem. Solids 10 87
[33] Xu W M, Naaman O, Rozenberg G K, Pasternak M P and Taylor R D 2001 Phys. Rev. B 64 094411
[34] Pavarini E, Biermann S, Poteryaev A, Lichtenstein A I, Georges A and Andersen O K 2004 Phys. Rev. Lett. 92 176403
[35] Ulrich C, Gössling A, Grüninger M, Guennou M, Roth H, Cwik M, Lorenz T, Khaliullin G and Keimer B 2006 Phys. Rev. Lett. 97 157401
[36] Khaliullin G and Maekawa S 2000 Phys. Rev. Lett. 85 3950
[37] Lan Y C, Chen X L and He M 2003 J. Alloys Compd. 354 95
[38] Eremin M V, Deisenhofer J, Eremina R M, Teyssier J, van der Marel D and Loidl A 2011 Phys. Rev. B 84 212407
[39] Streltsov S V, Korotin M A, Anisimov V I and Khomskii D I 2008 Phys. Rev. B 78 054425
[40] Feng H L, Arai M, Matsushita Y, Tsujimoto Y, Guo Y, Sathish C I, Wang X, Yuan Y H, Tanaka M and Yamaura K 2014 J. Am. Chem. Soc. 136 3326
[41] Deng H S, Liu M, Dai J H, Hu Z W, Kuo C, Yin Y Y, Yang J Y, Wang X, Zhao Q, Xu Y J, Fu Z M, Cai J W, Guo H Z, Jin K J, Pi T, Soo Y, Zhou G H, Cheng J G, Chen K, Ohresser P, Yang Y F, Jin C Q, Tjeng L H and Long Y W 2016 Phys. Rev. B 94 024414
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[3] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[4] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[5] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[6] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[7] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[8] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[9] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[10] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[11] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[12] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[13] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[14] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[15] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
No Suggested Reading articles found!