Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 096301    DOI: 10.1088/1674-1056/ab9bff
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation

Wenyu Fang(方文玉)1, Wenbin Kang(康文斌)1,2, Jun Zhao(赵军)1,2, Pengcheng Zhang(张鹏程)1
1 School of Public Health and Management, Hubei University of Medicine, Shiyan 442000, China;
2 Hubei Biomedical Detection Sharing Platform in Water Source Area of South to North Water Diversion Project, Shiyan 442000, China
Abstract  By applying the first principles calculations combined with density functional theory (DFT), this study explored the optical properties, electronic structure, and structure stability of triangular borophene decorated chemically, B3X (X=F, Cl) in a systematical manner. As revealed from the results of formation energy, phonon dispersion, and molecular dynamics simulation study, all the borophene decorated chemically were superior and able to be fabricated. In the present study, triangular borophene was reported to be converted into Dirac-like materials when functionalized by F and Cl exhibiting narrow direct band gaps as 0.19 eV and 0.17 eV, separately. Significant light absorption was assessed in the visible light and ultraviolet region. According the mentioned findings, these two-dimensional (2D) materials show large and wide promising applications for future nanoelectronics and optoelectronics.
Keywords:  triangular borophene      dirac material      electronic structure      first-principles calculation  
Received:  21 May 2020      Revised:  11 June 2020      Accepted manuscript online:  12 June 2020
PACS:  63.20.dk (First-principles theory)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11947006) and the Cultivating Project for Young Scholar at Hubei University of Medicine, China (Grant No. 2018QDJZR22).
Corresponding Authors:  Jun Zhao, Pengcheng Zhang     E-mail:  stzhao@163.com;pengchzhang@163.com

Cite this article: 

Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程) Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation 2020 Chin. Phys. B 29 096301

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Van Noorden R 2006 Nature 442 228
[3] Luk'yanchuk I A and Kopelevich Y 2006 Phys. Rev. Lett. 97 256801
[4] Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y and Yuan J 2019 Adv. Funct. Mater. 29 1807398
[5] Fu N W, Ji C L, Yi L, Xin M Z, Xue J W, Yu F C, Jian L Chun L W, Ming L Z and Liang M M 2019 Chin. Phys. B 28 047101
[6] Yan F G and Yong L 2019 Chin. Phys. B 28 077104
[7] Karthikeyan J, Ranawat Y S, Murugan P, Kumar V 2018 Nanoscale 10 17198
[8] Yuan J H, Yu N N, Xue K H, Miao X S 2017 Appl. Surf. Sci. 409 85
[9] Hashimoto A, Suenaga K, Gloter A, Urita K and Iijima S 2004 Nature 430 870
[10] Zhu Y L, Yuan J H, Song Y Q, Wang S, Xue K H, Xu M, Cheng X M and Miao X S 2019 J. Mater. Sci. 54 11485
[11] Shih P H, Chiu Y H, Wu J Y, Shyu F L, Lin M F 2017 Sci. Rep. 7 40600
[12] Chaudhary R P, Saxena S and Shukla S 2016 Nanotechnology 27 495701
[13] Wu L, Wang J, Lu J, Liu D, Yang N, Huang H, Chu P K and Yu X F 2018 Small e1801405
[14] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Ed. Engl. 54 3112
[15] Wang X, Song J and Qu J 2019 Angew. Chem. Int. Ed. Engl. 58 1574
[16] Zhao Y, Li X, Liu J, Zhang C and Wang Q 2018 J. Phys. Chem. Lett. 9 1815
[17] Carrete J, Gallego L J and Mingo N 2017 J. Phys. Chem. Lett. 8 1375
[18] Tang W, Sun M, Ren Q, Wang S and Yu J 2016 Appl. Surf. Sci. 376 286
[19] Yuan J, Xie Q, Yu N and Wang J 2017 Appl. Surf. Sci. 394 625
[20] Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Bozovic I and Gozar A 2019 Nat. Nanotechnol. 14 44
[21] Sheng S, Wu J B, Cong X, Zhong Q, Li W, Hu W, Gou J, Cheng P, Tan P H, Chen L and Wu K 2019 ACS Nano 13 4133
[22] Tang H and Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501
[23] Qiu G, Xiao Q, Hu Y, Qin W, Wang D 2004 J. Colloid Interface Sci. 270 127
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[26] Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131
[27] Zhen-Ye Z, Si-Qi W and Yan-Ming F 2016 Chin. Phys. Lett. 33 026302
[28] Yuan J, Yu N, Xue K and Miao X 2017 RSC Adv. 7 8654
[29] Fan M, Wen Y, Ye D, Jin Z, Zhao P, Chen D, Lu X, He Q 2019 Adv. Healthc. Mater. 8 e1900157
[30] Zhao J, Li Y and Ma J 2016 Nanoscale 8 9657
[31] Fang W Y, Li P A, Yuan J H, Xue K H and Wang J F 2020 J. Electron. Mater. 49 959
[32] Yu Y, Chen C L, Zhao G D, Zheng X L and Zhu X H 2014 Chin. Phys. Lett. 31 106301
[33] Peng R, Ma Y, He Z, Huang B, Kou L and Dai Y 2019 Nano Lett. 19 1227
[34] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[35] Castellanos-Gomez A, Poot M, Steele G A, Van Der Zant H S, Agrait N and Rubio-Bollinger G 2012 Adv. Mater. 24 772
[36] Li L and Yang J 2017 Nanotechnology 28 475701
[37] Li Y, Yu C, Gan Y, Kong Y, Jiang P, Zou D F, Li P, Yu X F, Wu R, Zhao H, Gao C F and Li J 2019 Nanotechnology 30 335703
[38] Liu L, Zhang J, Zhao J and Liu F 2012 Nanoscale 4 5910
[39] Kang J, Sahin H and Peeters F M 2015 Phys. Chem. Chem. Phys. 17 27742
[40] Zhang D, Xiong Y, Cheng J, Chai J, Liu T, Ba X, Ullah S, Zheng G, Yan M and Cao M 2020 Sci. Bull. 65 138
[41] Hua C, Sheng F, Hu Q, Xu Z A, Lu Y and Zheng Y 2018 J. Phys. Chem. Lett. 9 6695
[42] Feng S Q, Li J Y and Cheng X L 2015 Chin. Phys. Lett. 32 036301
[43] Weick G, Woollacott C, Barnes W L, Hess O and Mariani E 2013 Phys. Rev. Lett. 110 106801
[44] Zhang Y, Kang J, Zheng F, Gao P F, Zhang S L and Wang L W 2019 J. Phys. Chem. Lett. 10 6656
[45] Xu L C, Du A and Kou L 2016 Phys. Chem. Chem. Phys. 18 27284
[46] Fang W Y, Zhang P C, Zhao J and Kang W B 2020 Acta Phys. Sin. 69 056301 (in Chinese)
[47] Wang Y F and Li X W 2018 Acta Phys. Sin. 67 116301 (in Chinese)
[48] Mogulkoc A, Mogulkoc Y, Kecik D and Durgun E 2018 Phys. Chem. Chem. Phys. 20 21043
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
No Suggested Reading articles found!