Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 108102    DOI: 10.1088/1674-1056/ac05a5
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Stability and optoelectronic property of lead-free halide double perovskite Cs2B'BiI6 (B' = Li, Na and K)

Yunhui Liu(刘云辉)1, Wei Wang(王威)1, Feng Xiao(肖峰)1, Liangbin Xiong(熊良斌)2,†, and Xing Ming(明星)1,‡
1 College of Science, Guilin University of Technology, Guilin 541004, China;
2 School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
Abstract  Although lead-based perovskite solar cells have achieved more than 25% power conversion efficiency, the toxicity of lead and instability are still urgent problems faced in industrial application. Lead-free halide double perovskite (DP) materials are promising candidates to resolve these issues. Based on the density functional theory, we explore the geometric stability, thermodynamic stability, mechanical stability, electronic structures, and optical properties of the Cs2B'BiI6 (B' =m Li, Na and K) DP materials. By analyzing the tolerance factor and octahedral factor, we find the geometric stabilities of Cs2NaBiI6 and Cs2KBiI6 DPs are better than Cs2LiBiI6. By calculating the total energy, formation energy and decomposition energy, we propose that the most favorable structure of Cs2B'BiI6 is the orthorhombic phase, and Cs2LiBiI6 is less stable relative to the other two counterparts from an energetic viewpoint. Mechanical stability evaluations reveal that the orthorhombic Cs2LiBiI6 material is less stable relative to the isostructural Cs2NaBiI6 and Cs2KBiI6 DPs. The mechanical property calculations indicate that the Cs2B'BiI6 DPs possess good ductility, which can be used as flexible materials. Electronic structures and optical property calculations show that the orthorhombic Cs2B'BiI6 DPs have suitable band gap values, weaker exciton binding energies, and excellent optical absorption performance in the visible-light range. Based on the above comprehensive assessments, we can conclude that the orthorhombic Cs2NaBiI6 and Cs2KBiI6 DPs with good stability are promising candidates for solar cell applications.
Keywords:  lead-free halide double perovskite      solar cells      stability      optoelectronic property  
Received:  30 March 2021      Revised:  08 May 2021      Accepted manuscript online:  27 May 2021
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  88.40.H- (Solar cells (photovoltaics))  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864008) and Guangxi Natural Science Foundation, China (Grant Nos. 2018GXNSFAA138185, 2018AD19200, and 2019GXNSFGA245006).
Corresponding Authors:  Liangbin Xiong, Xing Ming     E-mail:  xiongliangbin@gpnu.edu.cn;mingxing@glut.edu.cn

Cite this article: 

Yunhui Liu(刘云辉), Wei Wang(王威), Feng Xiao(肖峰), Liangbin Xiong(熊良斌), and Xing Ming(明星) Stability and optoelectronic property of lead-free halide double perovskite Cs2B'BiI6 (B' = Li, Na and K) 2021 Chin. Phys. B 30 108102

[1] Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee T W and Sargent E H 2019 Chem. Rev. 119 7444
[2] Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F and Snaith H J 2019 Nature 571 245
[3] Best Research-Cell Efficiency Chart https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf
[4] Ke W and Kanatzidis M G 2019 Nat. Commun. 10 965
[5] Jena A K, Kulkarni A and Miyasaka T 2019 Chem. Rev. 119 3036
[6] Shamsi J, Urban A S, Imran M, De Trizio L and Manna L 2019 Chem. Rev. 119 3296
[7] Jiang X and Yin W J 2020 Chin. Phys. B 29 028803
[8] Yang J, Zhang P, Wang J and Wei S H 2020 Chin. Phys. B 29 108401
[9] Jellicoe T C, Richter J M, Glass H F J, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C and Böhm M L 2016 J. Am. Chem. Soc. 138 2941
[10] Swarnkar A, Ravi V K and Nag A 2017 ACS Energy Lett. 2 1089
[11] Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H and Zhang L 2017 J. Am. Chem. Soc. 139 2630
[12] Xiao Z, Du K Z, Meng W, Wang J, Mitzi D B and Yan Y 2017 J. Am. Chem. Soc. 139 6054
[13] Zhao X G, Yang D, Ren J C, Sun Y, Xiao Z and Zhang L 2018 Joule 2 1662
[14] Li T, Zhao X, Yang D, Du M H and Zhang L 2018 Phys. Rev. Appl. 10 041001
[15] Zhao X G, Yang D, Sun Y, Li T, Zhang L, Yu L and Zunger A 2017 J. Am. Chem. Soc. 139 6718
[16] Xu Q, Yang D, Lv J, Sun Y Y and Zhang L 2018 Small Methods 2 1700316
[17] Chu L, Ahmad W, Liu W, Yang J, Zhang R, Sun Y, Yang J and Li X 2019 Nano-Micro Lett. 11 16
[18] Xiao Z, Meng W, Wang J, Mitzi D B and Yan Y 2017 Mater. Horizons 4 206
[19] Morss L R, Siegal M, Stenger L and Edelstein N 1970 Inorg. Chem. 9 1771
[20] Barbier P, Drache M, Mairesse G and Ravez J 1982 J. Solid State Chem. 42 130
[21] Flerov I N, Gorev M V, Aleksandrov K S, Tressaud A, Grannec J and Couzi M 1998 Mater. Sci. Eng. R Reports 24 81
[22] Smit W M A, Dirksen G J and Stufkens D J 1990 J. Phys. Chem. Solids 51 189
[23] Pelle F, Blanzat B and Chevalier B 1984 Solid State Commun. 49 1089
[24] McClure E T, Ball M R, Windl W and Woodward P M 2016 Chem. Mater. 28 1348
[25] Slavney A H, Hu T, Lindenberg A M and Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138
[26] Filip M R, Hillman S, Haghighirad A A, Snaith H J and Giustino F 2016 J. Phys. Chem. Lett. 7 2579
[27] Shi H and Du M H 2015 Phys. Rev. Appl. 3 054005
[28] Majher J D, Gray M B, Strom T A and Woodward P M 2019 Chem. Mater. 31 1738
[29] Zhou J, Rong X, Zhang P, Molokeev M S, Wei P, Liu Q, Zhang X and Xia Z 2019 Adv. Opt. Mater. 7 1801435
[30] Yao M M, Wang L, Yao J S, Wang K H, Chen C, Zhu B S, Yang J N, Wang J J, Xu W P, Zhang Q and Yao H B 2020 Adv. Opt. Mater. 8 1901919
[31] Zhang C, Gao L, Teo S, Guo Z, Xu Z, Zhao S and Ma T 2018 Sustain. Energy Fuels 2 2419
[32] Peedikakkandy L, Chatterjee S and Pal A J 2020 J. Phys. Chem. C 124 10878
[33] Li P, Gao W, Ran C, Dong H, Hou X and Wu Z 2019 Phys. Status Solidi 216 1900567
[34] Cheng P, Wu T, Li Y, Jiang L, Deng W and Han K 2017 New J. Chem. 41 9598
[35] Yang F, Wang C, Pan Y, Zhou X, Kong X and Ji W 2019 Chin. Phys. B 28 056402
[36] Diao X F, Tang Y L and Xie Q 2019 Chin. Phys. B 28 017802
[37] Lei J H, Tang Q, He J and Cai M Q 2021 Chin. Phys. B 30 038102
[38] Zhao S, Yamamoto K, Iikubo S, Hayase S and Ma T 2018 J. Phys. Chem. Solids 117 117
[39] Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M and White T J 2013 J. Mater. Chem. A 1 5628
[40] Thind A S, Huang X, Sun J and Mishra R 2017 Chem. Mater. 29 6003
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Blöchl P E 1994 Phys. Rev. B 50 17953
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[45] Huang X, Paudel T R, Dong S and Tsymbal E Y 2015 Phys. Rev. B 92 125201
[46] Travis W, Glover E N K, Bronstein H, Scanlon D O and Palgrave R G 2016 Chem. Sci. 7 4548
[47] Goldschmidt V M 1926 Naturwissenschaften 14 477
[48] Li C, Lu X, Ding W, Feng L, Gao Y and Guo Z 2008 Acta Crystallogr. Sect. B Struct. Sci. 64 702
[49] Shannon R D 1976 Acta Crystallogr. Sect. A 32 751
[50] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002
[51] Gómez-Pérez A, Pérez-Flores J C, Ritter C, Boulahya K, Castro G R, García-Alvarado F and Amador U 2014 J. Appl. Crystallogr. 47 745
[52] Volonakis G, Filip M R, Haghighirad A A, Sakai N, Wenger B, Snaith H J and Giustino F 2016 J. Phys. Chem. Lett. 7 1254
[53] Dar S A, Srivastava V and Sakalle U K 2017 Mater. Res. Express 4 086304
[54] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[55] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
[56] Pu C Y, Yu R M, Wang T, Xüe Z Y, Zhu Y S and Zhou D W 2021 Chin. Phys. B 30 017102
[57] Su J, Zhang Z, Hou J, Liu M, Lin Z, Hu Z, Chang J and Hao Y 2019 Adv. Theory Simulations 2 1900164
[58] Wang D, Wen B, Zhu Y N, Tong C J, Tang Z K and Liu L M 2017 J. Phys. Chem. Lett. 8 876
[59] Jong U G, Yu C J, Ri J S, Kim N H and Ri G C 2016 Phys. Rev. B 94 1
[60] Khan I, Shahab, Haq I U, Ali A, Ali Z and Ahmad I 2021 J. Electron. Mater. 50 456
[61] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Graẗzel M, Mhaisalkar S and Sum T C 2013 Science. 342 344
[62] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M and Park N G 2012 Sci. Rep. 2 591
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[11] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[12] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[13] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!