INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Stability and optoelectronic property of lead-free halide double perovskite Cs2B'BiI6 (B' = Li, Na and K) |
Yunhui Liu(刘云辉)1, Wei Wang(王威)1, Feng Xiao(肖峰)1, Liangbin Xiong(熊良斌)2,†, and Xing Ming(明星)1,‡ |
1 College of Science, Guilin University of Technology, Guilin 541004, China; 2 School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China |
|
|
Abstract Although lead-based perovskite solar cells have achieved more than 25% power conversion efficiency, the toxicity of lead and instability are still urgent problems faced in industrial application. Lead-free halide double perovskite (DP) materials are promising candidates to resolve these issues. Based on the density functional theory, we explore the geometric stability, thermodynamic stability, mechanical stability, electronic structures, and optical properties of the Cs2B'BiI6 (B' =m Li, Na and K) DP materials. By analyzing the tolerance factor and octahedral factor, we find the geometric stabilities of Cs2NaBiI6 and Cs2KBiI6 DPs are better than Cs2LiBiI6. By calculating the total energy, formation energy and decomposition energy, we propose that the most favorable structure of Cs2B'BiI6 is the orthorhombic phase, and Cs2LiBiI6 is less stable relative to the other two counterparts from an energetic viewpoint. Mechanical stability evaluations reveal that the orthorhombic Cs2LiBiI6 material is less stable relative to the isostructural Cs2NaBiI6 and Cs2KBiI6 DPs. The mechanical property calculations indicate that the Cs2B'BiI6 DPs possess good ductility, which can be used as flexible materials. Electronic structures and optical property calculations show that the orthorhombic Cs2B'BiI6 DPs have suitable band gap values, weaker exciton binding energies, and excellent optical absorption performance in the visible-light range. Based on the above comprehensive assessments, we can conclude that the orthorhombic Cs2NaBiI6 and Cs2KBiI6 DPs with good stability are promising candidates for solar cell applications.
|
Received: 30 March 2021
Revised: 08 May 2021
Accepted manuscript online: 27 May 2021
|
PACS:
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864008) and Guangxi Natural Science Foundation, China (Grant Nos. 2018GXNSFAA138185, 2018AD19200, and 2019GXNSFGA245006). |
Corresponding Authors:
Liangbin Xiong, Xing Ming
E-mail: xiongliangbin@gpnu.edu.cn;mingxing@glut.edu.cn
|
Cite this article:
Yunhui Liu(刘云辉), Wei Wang(王威), Feng Xiao(肖峰), Liangbin Xiong(熊良斌), and Xing Ming(明星) Stability and optoelectronic property of lead-free halide double perovskite Cs2B'BiI6 (B' = Li, Na and K) 2021 Chin. Phys. B 30 108102
|
[1] Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee T W and Sargent E H 2019 Chem. Rev. 119 7444 [2] Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang J T W, Huettner S, Buecheler S, Fahlman M, Gao F and Snaith H J 2019 Nature 571 245 [3] Best Research-Cell Efficiency Chart https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf [4] Ke W and Kanatzidis M G 2019 Nat. Commun. 10 965 [5] Jena A K, Kulkarni A and Miyasaka T 2019 Chem. Rev. 119 3036 [6] Shamsi J, Urban A S, Imran M, De Trizio L and Manna L 2019 Chem. Rev. 119 3296 [7] Jiang X and Yin W J 2020 Chin. Phys. B 29 028803 [8] Yang J, Zhang P, Wang J and Wei S H 2020 Chin. Phys. B 29 108401 [9] Jellicoe T C, Richter J M, Glass H F J, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C and Böhm M L 2016 J. Am. Chem. Soc. 138 2941 [10] Swarnkar A, Ravi V K and Nag A 2017 ACS Energy Lett. 2 1089 [11] Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H and Zhang L 2017 J. Am. Chem. Soc. 139 2630 [12] Xiao Z, Du K Z, Meng W, Wang J, Mitzi D B and Yan Y 2017 J. Am. Chem. Soc. 139 6054 [13] Zhao X G, Yang D, Ren J C, Sun Y, Xiao Z and Zhang L 2018 Joule 2 1662 [14] Li T, Zhao X, Yang D, Du M H and Zhang L 2018 Phys. Rev. Appl. 10 041001 [15] Zhao X G, Yang D, Sun Y, Li T, Zhang L, Yu L and Zunger A 2017 J. Am. Chem. Soc. 139 6718 [16] Xu Q, Yang D, Lv J, Sun Y Y and Zhang L 2018 Small Methods 2 1700316 [17] Chu L, Ahmad W, Liu W, Yang J, Zhang R, Sun Y, Yang J and Li X 2019 Nano-Micro Lett. 11 16 [18] Xiao Z, Meng W, Wang J, Mitzi D B and Yan Y 2017 Mater. Horizons 4 206 [19] Morss L R, Siegal M, Stenger L and Edelstein N 1970 Inorg. Chem. 9 1771 [20] Barbier P, Drache M, Mairesse G and Ravez J 1982 J. Solid State Chem. 42 130 [21] Flerov I N, Gorev M V, Aleksandrov K S, Tressaud A, Grannec J and Couzi M 1998 Mater. Sci. Eng. R Reports 24 81 [22] Smit W M A, Dirksen G J and Stufkens D J 1990 J. Phys. Chem. Solids 51 189 [23] Pelle F, Blanzat B and Chevalier B 1984 Solid State Commun. 49 1089 [24] McClure E T, Ball M R, Windl W and Woodward P M 2016 Chem. Mater. 28 1348 [25] Slavney A H, Hu T, Lindenberg A M and Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138 [26] Filip M R, Hillman S, Haghighirad A A, Snaith H J and Giustino F 2016 J. Phys. Chem. Lett. 7 2579 [27] Shi H and Du M H 2015 Phys. Rev. Appl. 3 054005 [28] Majher J D, Gray M B, Strom T A and Woodward P M 2019 Chem. Mater. 31 1738 [29] Zhou J, Rong X, Zhang P, Molokeev M S, Wei P, Liu Q, Zhang X and Xia Z 2019 Adv. Opt. Mater. 7 1801435 [30] Yao M M, Wang L, Yao J S, Wang K H, Chen C, Zhu B S, Yang J N, Wang J J, Xu W P, Zhang Q and Yao H B 2020 Adv. Opt. Mater. 8 1901919 [31] Zhang C, Gao L, Teo S, Guo Z, Xu Z, Zhao S and Ma T 2018 Sustain. Energy Fuels 2 2419 [32] Peedikakkandy L, Chatterjee S and Pal A J 2020 J. Phys. Chem. C 124 10878 [33] Li P, Gao W, Ran C, Dong H, Hou X and Wu Z 2019 Phys. Status Solidi 216 1900567 [34] Cheng P, Wu T, Li Y, Jiang L, Deng W and Han K 2017 New J. Chem. 41 9598 [35] Yang F, Wang C, Pan Y, Zhou X, Kong X and Ji W 2019 Chin. Phys. B 28 056402 [36] Diao X F, Tang Y L and Xie Q 2019 Chin. Phys. B 28 017802 [37] Lei J H, Tang Q, He J and Cai M Q 2021 Chin. Phys. B 30 038102 [38] Zhao S, Yamamoto K, Iikubo S, Hayase S and Ma T 2018 J. Phys. Chem. Solids 117 117 [39] Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M and White T J 2013 J. Mater. Chem. A 1 5628 [40] Thind A S, Huang X, Sun J and Mishra R 2017 Chem. Mater. 29 6003 [41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [42] Blöchl P E 1994 Phys. Rev. B 50 17953 [43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [44] Gajdoš M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112 [45] Huang X, Paudel T R, Dong S and Tsymbal E Y 2015 Phys. Rev. B 92 125201 [46] Travis W, Glover E N K, Bronstein H, Scanlon D O and Palgrave R G 2016 Chem. Sci. 7 4548 [47] Goldschmidt V M 1926 Naturwissenschaften 14 477 [48] Li C, Lu X, Ding W, Feng L, Gao Y and Guo Z 2008 Acta Crystallogr. Sect. B Struct. Sci. 64 702 [49] Shannon R D 1976 Acta Crystallogr. Sect. A 32 751 [50] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002 [51] Gómez-Pérez A, Pérez-Flores J C, Ritter C, Boulahya K, Castro G R, García-Alvarado F and Amador U 2014 J. Appl. Crystallogr. 47 745 [52] Volonakis G, Filip M R, Haghighirad A A, Sakai N, Wenger B, Snaith H J and Giustino F 2016 J. Phys. Chem. Lett. 7 1254 [53] Dar S A, Srivastava V and Sakalle U K 2017 Mater. Res. Express 4 086304 [54] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 [55] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349 [56] Pu C Y, Yu R M, Wang T, Xüe Z Y, Zhu Y S and Zhou D W 2021 Chin. Phys. B 30 017102 [57] Su J, Zhang Z, Hou J, Liu M, Lin Z, Hu Z, Chang J and Hao Y 2019 Adv. Theory Simulations 2 1900164 [58] Wang D, Wen B, Zhu Y N, Tong C J, Tang Z K and Liu L M 2017 J. Phys. Chem. Lett. 8 876 [59] Jong U G, Yu C J, Ri J S, Kim N H and Ri G C 2016 Phys. Rev. B 94 1 [60] Khan I, Shahab, Haq I U, Ali A, Ali Z and Ahmad I 2021 J. Electron. Mater. 50 456 [61] Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Graẗzel M, Mhaisalkar S and Sum T C 2013 Science. 342 344 [62] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M and Park N G 2012 Sci. Rep. 2 591 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|