Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 026201    DOI: 10.1088/1674-1056/27/2/026201
RAPID COMMUNICATION Prev   Next  

Neutron powder diffraction and high-pressure synchrotron x-ray diffraction study of tantalum nitrides

Lei-hao Feng(冯雷豪)1, Qi-wei Hu(胡启威)1, Li Lei(雷力)1, Lei-ming Fang(房雷鸣)2, Lei Qi(戚磊)1, Lei-lei Zhang(张雷雷)1, Mei-fang Pu(蒲梅芳)1, Zi-li Kou(寇自力)1, Fang Peng(彭放)1, Xi-ping Chen(陈喜平)2, Yuan-hua Xia(夏元华)2, Yohei Kojima(小岛洋平)3, Hiroaki Ohfuji(大藤宏明)3, Duan-wei He(贺端威)1, Bo Chen(陈波)2, Tetsuo Irifune(入舩徹男)3
1. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
3. Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
Abstract  

Tantalum nitride (TaN) compact with a Vickers hardness of 26 GPa is prepared by a high-pressure and high-temperature (HPHT) method. The crystal structure and atom occupations of WC-type TaN have been investigated by neutron powder diffraction, and the compressibility of WC-type TaN has been investigated by using in-situ high-pressure synchrotron x-ray diffraction. The third-order Birch-Murnaghan equation of state fitted to the x-ray diffraction pressure-volume (P-V) sets of data, collected up to 41 GPa, yields ambient pressure isothermal bulk moduli of B0=369(2) GPa with pressure derivatives of B0'=4 for the WC-type TaN. The bulk modulus of WC-type TaN is not in good agreement with the previous result (B0=351 GPa), which is close to the recent theoretical calculation result (B0=378 GPa). An analysis of the experiment results shows that crystal structure of WC-type TaN can be viewed as alternate stacking of Ta and N layers along the c direction, and the covalent Ta-N bonds between Ta and N layers along the c axis in the crystal structure play an important role in the incompressibility and hardness of WC-type TaN.

Keywords:  neutron powder diffraction      synchrotron x-ray diffraction      TaN      high pressure  
Received:  29 November 2017      Revised:  12 December 2017      Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  61.05.cp (X-ray diffraction)  
  61.05.F- (Neutron diffraction and scattering)  
  31.15.ae (Electronic structure and bonding characteristics)  
Fund: 

Project supported by the Research Foundation of Key Laboratory of Neutron Physics (Grant No. 2015BB03), the National Natural Science Foundation of China (Grant Nos. 11774247), the Science Foundation for Excellent Youth Scholars of Sichuan University (Grant No. 2015SCU04A04), and the Joint Usage/Research Center PRIUS (Ehime University, Japan) and Chinese Academy of Sciences (Grant No. 2017-BEPC-PT-000568).

Corresponding Authors:  Li Lei     E-mail:  lei@scu.edu.cn
About author:  62.50.-p; 61.05.cp; 61.05.F-; 31.15.ae

Cite this article: 

Lei-hao Feng(冯雷豪), Qi-wei Hu(胡启威), Li Lei(雷力), Lei-ming Fang(房雷鸣), Lei Qi(戚磊), Lei-lei Zhang(张雷雷), Mei-fang Pu(蒲梅芳), Zi-li Kou(寇自力), Fang Peng(彭放), Xi-ping Chen(陈喜平), Yuan-hua Xia(夏元华), Yohei Kojima(小岛洋平), Hiroaki Ohfuji(大藤宏明), Duan-wei He(贺端威), Bo Chen(陈波), Tetsuo Irifune(入舩徹男) Neutron powder diffraction and high-pressure synchrotron x-ray diffraction study of tantalum nitrides 2018 Chin. Phys. B 27 026201

[1] Toth L E 1971 Transition Metal Carbides and Nitrides (New York:Academic) pp. 217-223
[2] Oyama S T 1996 the Chemistry of Transition Metal Carbides and Nitrides (Dordrecht:Springer) pp. 1-27
[3] Chuang J C and Chen M C 1998 Thin Solid Films 322 213
[4] Shi L Yang Z and Chen L 2005 Solid State Commun. 133 117
[5] Eda K, Miwa T and Taguchi Y 1990 IEEE Trans. Micro. Theory. Tech. 38 1949
[6] Schönberg N, Overend W and Munthe-Kaas A 1954 Acta Chem. Scand 8(2)
[7] Mashimo T, Tashiro S, Toya T, Nishida M, Yamazaki H, Yamaya S, Oh-ishi K and Syono Y 1993 J. Mater. Sci. 28 3443
[8] Mashimo T, Tashiro S, Nishida M, Miyahara K and Eto E 1997 Physica B 239 13
[9] Gerstenberg D and Calbrick C J 1964 J. Appl. Phys. 35 402
[10] Mashimo T, Tashiro S and Nishida 1997 Physica B 239 13
[11] Boiko L G and Popova S V 1970 JETP Lett. (USSR) 12 70
[12] Brauer G, Skokan A, Neuhaus A and Mohr E 1972 Monatsh. Chem. 103 794
[13] Li J, Wang X, Liu K, Li D and Chen L 2011 J. Superhard Mater. 33 173
[14] Chang J, Zhao G P, Zhou X L, Liu K and Lu L Y 2012 J. Appl. Phys. 112 083519
[15] Yusa H, Kawamura F, Taniguchi T, Hirao N, Ohishi Y and Kikegawa T 2014 J. Appl. Phys. 115 103520
[16] Lee S L, Doxbeck M and Mueller J 2004 Surf. Coat. Technol. 177 44
[17] Zhao E, Hong B and Meng J 2009 J. Comput. Chem. 30 2358
[18] Kim T E, Han S and Son W 2008 Comput. Mater. Sci. 44 577
[19] Ren F and Wang Y 2011 Thin Solid Films 519 3954
[20] Lei L, Ohfuji H and Qin J 2013 Solid State Commun. 164 6
[21] Hammersley A P, Svensson S O and Hanfland M 1996 High Pressure Res. 14 235
[22] Kojima Y and Ohfuji H 2013 Diam. Relat. Mater. 39 1
[23] Ohfuji H and Yamamoto M 2015 J. Miner. Petrol. Sci. 110 189
[24] Willis B T M and Carlile C J 2017 Experimental neutron scattering (Oxford:Oxford University Press)
[25] Kennedy B J, Hunter B A and Howard C J 1997 J. Solid State Chem. 130 58
[26] Zhang F X, Lian J, Becker U, Ewing R C, Hu J and Saxena S K 2007 Phys. Rev. B 76 214104
[27] Errandonea D, Santamaria-Perez D, Vegas A, Nuss J, Jansen M, Rodrıguez Hernandez P and Munoz A 2008 Phys. Rev. B 77 094113
[1] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[4] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[5] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[6] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[7] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[8] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[9] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[10] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[11] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[12] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[13] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[14] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[15] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
No Suggested Reading articles found!