Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 026501    DOI: 10.1088/1674-1056/27/2/026501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes

Kui-Kui Zhou(周魁葵)1,2, Ning Xu(徐 宁)1,2, Guo-Feng Xie(谢国锋)1
1. Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
2. Deparment of Physics, Yancheng Institute of Technology, Yancheng 224051, China
Abstract  We use molecular dynamics simulation to calculate the thermal conductivities of (5, 5) carbon nanotube superlattices (CNTSLs) and defective carbon nanotubes (DCNTs), where CNTSLs and DCNTs have the same size. It is found that the thermal conductivity of DCNT is lower than that of CNTSL at the same concentration of Stone-Wales (SW) defects. We perform the analysis of heat current autocorrelation functions and observe the phonon coherent resonance in CNTSLs, but do not observe the same effect in DCNTs. The phonon vibrational eigen-mode analysis reveals that all modes of phonons are strongly localized by SW defects. The degree of localization of CNTSLs is lower than that of DCNTs, because the phonon coherent resonance results in the phonon tunneling effect in the longitudinal phonon mode. The results are helpful in understanding and tuning the thermal conductivity of carbon nanotubes by defect engineering.
Keywords:  thermal conductivity      carbon nanotube superlattices      defective carbon nanotubes      phonon coherent resonance  
Received:  26 September 2017      Revised:  08 November 2017      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404278 and 11275163) and the Science Foundation of Hunan Province, China (Grant No. 2016JJ2131).
Corresponding Authors:  Ning Xu, Guo-Feng Xie     E-mail:  xuning79530@126.com;gfxie@xtu.edu.cn
About author:  65.80.-g; 63.22.-m

Cite this article: 

Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋) Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes 2018 Chin. Phys. B 27 026501

[1] Iijima S 1991 Nature 354 56
[2] De Volder M F, Tawfick S H, Baughman R H and Hart A J 2013 Science 339 535
[3] Javey A, Qi P, Wang Q and Dai H 2004 Proc. Natl. Acad. Sci. USA 101 13408
[4] Pop E, Mann D, Wang Q, Goodson K and Dai H 2006 Nano Lett. 6 96
[5] Deng F and Zheng Q S 2008 Appl. Phys. Lett. 92 071902
[6] Ujereh S, Fisher T and Mudawar I 2007 Int. J. Heat Mass Transfer 50 4023
[7] Cola B A, Xu X and Fisher T S 2007 Appl. Phys. Lett. 90 093513
[8] Zhang K, Chai Y, Yuen M M F, Xiao D G W and Chan P C H 2008 Nanotechnology 19 215706
[9] Balandin A A 2011 Nat. Mater. 10 569
[10] Sadeghi M M, Pettes M T and Shi L 2012 Solid State Commun. 152 1321
[11] Zhang G and Li B 2010 Nanoscale 2 1058
[12] Li N, Ren J, Wang L, Zhang G, H? nggi P and Li B 2012 Rev. Mod. Phys. 84 1045
[13] Marconnet A M, Panzer M A and Goodson K E 2013 Rev. Mod. Phys. 85 1295
[14] Yang N, Xu X, Zhang G and Li B 2012 AIP Adv. 2 041410
[15] Zhan H, Zhang Y, Bell J M, Mai Y-W and Gu Y 2014 Carbon 77 416
[16] Maruyama S 2002 Physica B 323 193
[17] Zhang G and Li B 2005 J. Chem. Phys. 123 114714
[18] Chang C W, Okawa D, Garcia H, Majumdar A and Zettl A 2008 Phys. Rev. Lett. 101 075903
[19] Pan R Q, Xu Z J, and Dai C X 2014 Chin. Phys. Lett. 31 16501
[20] Che J, Cagin T and Goddard Ⅲ W A 2000 Nanotechnology 11 65
[21] Kondo N, Yamamoto T and Watanabe K 2006 e-J. Surf. Sci. Nanotech. 4 239
[22] Feng D L, Feng Y H, Chen Y, Li W and Zhang X X 2013 Chin. Phys. B 22 016501
[23] Li W, Feng Y H, Peng J and Zhang X X 2012 J. Heat Transfer 134 092401
[24] Xie G F, Shen Y L, Wei X L, Yang L W, Xiao H P, Zhong J X and Zhang G 2014 Sci. Rep. 4 5085
[25] Wang Y C, Zhang K W and Xie G F 2016 Appl. Surf. Sci. 360 107
[26] Xie G F, Guo Y, Wei X L, Zhang K W, Sun L Z, Zhong J X, Zhang G and Zhang Y W 2014 Appl. Phys. Lett. 104 233901
[27] Li W, Feng Y H, Chen Y, and Zhang X X 2012 Acta Phys. Sin. 61 136102(in Chinese)
[28] Xie G F, and Shen Y L 2015 Phys. Chem. Chem. Phys. 17 8822
[29] M"uller-Plathe F 1997 J. Chem. Phys. 106 6082
[30] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472
[31] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.:Condens. Matter 14 783
[32] Grujicic M, Cao G and Gersten B 2004 Matter Sci. Eng. B 107 204
[33] Ren C, Zhang W, Xu Z, Zhu Z and Huai P 2010 J. Phys. Chem. C 114 5786
[34] Xu Z and Buehler M J 2009 Nanotechnology 20 185701
[35] Wei N, Xu L, Wang H Q and Zheng J C 2011 Nanotechnology 22 105705
[36] Plimpton S 1995 J. Comput. Phys. 117 1
[37] Mizoguchi K, Matsutani K, Hase M, Nakashima S and Nakayama M 1998 Physica B 249 887
[38] Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 104508
[39] Che J, Çağin T, Deng W and Goddard W A 2000 J. Chem. Phys. 113 6888
[40] McGaughey A J H and Kaviany M 2004 Int. J. Heat Mass Transfer 47 1783
[41] Chen J, Zhang G and Li B 2010 Phys. Lett. A 374 2392
[42] Bodapati A, Schelling P K, Phillpot S R and Keblinski P 2006 Phys. Rev. B 74 245207
[43] Xie G F, Li B H, Yang L W, Cao J X, Guo Z X, Tang M H and Zhong J X 2013 J. Appl. Phys. 113 083501
[44] Schelling P K and Phillpot S R 2001 J. Am. Ceram. Soc. 84 2997
[45] Chen G 1999 J. Heat Transfer 121 945
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[8] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[13] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[14] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[15] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
No Suggested Reading articles found!