Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 025205    DOI: 10.1088/1674-1056/27/2/025205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A fast emittance measurement unit for high intensity DC beam

Ai-Lin Zhang(张艾霖), Hai-Tao Ren(任海涛), Shi-Xiang Peng(彭士香), Tao Zhang(张滔), Yuan Xu(徐源), Jing-Feng Zhang(张景丰), Jia-Mei Wen(温佳美), Wen-Bin Wu(武文斌), Zhi-Yu Guo(郭之虞), Jia-Er Ceng(陈佳洱)
State Key Laboratory of Nuclear Science and Technology & Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
Abstract  A combined unit, which has the ability to measure the current and emittance of the high intensity direct current (DC) ion beam, is developed at Peking University (PKU). It is a multi-slit single-wire (MSSW)-type beam emittance meter combined with a water-cooled Faraday Cup, named high intensity beam emittance measurement unit-6 (HIBEMU-6). It takes about 15 seconds to complete one measurement of the beam current and its emittance. The emittance of a 50-mA@50-kV DC proton beam is measured.
Keywords:  emittance      measurement      high intensity DC beam      MSSW  
Received:  13 June 2017      Revised:  06 October 2017      Accepted manuscript online: 
PACS:  52.50.Sw (Plasma heating by microwaves; ECR, LH, collisional heating)  
  52.75.-d (Plasma devices)  
  52.59.Sa (Space-charge-dominated beams)  
  52.59.Wd (Emittance-dominated beams)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB845502) and the National Natural Science Foundation of China (Grant No. 91126004).
Corresponding Authors:  Shi-Xiang Peng     E-mail:  sxpeng@pku.edu.cn
About author:  52.50.Sw; 52.75.-d; 52.59.Sa; 52.59.Wd

Cite this article: 

Ai-Lin Zhang(张艾霖), Hai-Tao Ren(任海涛), Shi-Xiang Peng(彭士香), Tao Zhang(张滔), Yuan Xu(徐源), Jing-Feng Zhang(张景丰), Jia-Mei Wen(温佳美), Wen-Bin Wu(武文斌), Zhi-Yu Guo(郭之虞), Jia-Er Ceng(陈佳洱) A fast emittance measurement unit for high intensity DC beam 2018 Chin. Phys. B 27 025205

[1] Peng S X, Zhang A L, Ren H T, Zhang T, Xu Y, Zhang J F, Gong J H, Guo Z Y and Chen J E 2015 Chin. Phys. B 24 075203
[2] Peng S X, et al. 2010 Proceedings of ECRIS2010, TUCOCK02, Grenoble, France, p. 102
[3] Marroncle J, Abbon P, Denis J F, Egberts J, Jeanneau F, Gournay J F, Marchix A, Mols J P, Papaevangelou T, Pomorski M, Calvo J, Carmona J M, Fernández P, Guirao A, Iglesias D, Oliver C, Podadera I, Soleto A and Poggi M 2012 Proc. IBIC, pp. 557-565
[4] Ludwig T, Volk K and Barth W 1994 Rev. Sci. Instrum 65 1462
[5] Forck P, Peters A and Strehl P 1998 Proc. EPAC98, pp. 1500-1502
[6] Peng S X, et al. 2012 Proc. IBIC, TUBP64
[7] Peng S X, Zhang A L, Ren H T, Zhang T, Zhang J F, Xu Y, Guo Z Y and Chen J E 2016 Rev. Sci. Instrum. 87 02A706
[8] Peng S X, Zhang A L, Ren H T, Zhang T, Zhang J F, Xu Y, Guo Z Y and Chen J E 2017 Chin. Phys. B 26 025206
[9] Wangler T P, Crandall K R, Ryne R and Wang T S 1998 Physical Review Special Topics-Accelerators and Beams 1 084201
[10] Strehl P 2006 Beam instrumentation and diagnostics, pp. 112-134
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[3] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[4] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[7] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[8] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[9] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[10] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[11] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[12] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[13] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[14] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[15] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
No Suggested Reading articles found!