Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 126304    DOI: 10.1088/1674-1056/27/12/126304
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Multilayer graphene refractive index tuning by optical power

Lijun Li(李丽君)1,2,3, Yilin Liu(刘仪琳)1, Yinming Liu(刘荫明)4, Lin Xu(徐琳)1, Fei Yu(于飞)1, Tianzong Xu(徐天纵)3, Zhihui Shi(石志辉)1, Weikang Jia(贾伟康)1
1 College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, China;
2 State Key Laboratory of Mining Disaster Prevention and Control Cofounded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China;
3 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China;
4 Library, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  

Graphene's optical absorption coefficient increases linearly with the number of layers making it more effective in the construction of optical tuning graphene-based devices. Refractive index (RI) is one of the important optical parameters of the graphene for accurately describing its optical characteristics and further applications. In view of the RI research of the multilayer graphene is lacking and existing measurement methods are complicated. Optical power tuning RI of multilayer graphene is investigated using a simple measurement and no temperature cross sensitivity all optical fiber sensing structure. Optical power tuning RI characteristics of multilayer graphene are studied by tuning the introducing broad band light power from 0.57 mW to 22.7 mW. Different thickness graphene coating shows different tuning efficiency. At 4.86-μm thickness, a 3.433-nm Bragg wavelength shift is obtained with 156.2-pm/mW wavelength versus optical power tuning sensitivity corresponding to 3.25×103 RI change and 0.154 URI/W (URI, unit of RI) RI optical power tuning efficiency.

Keywords:  multilayer graphene      fiber Bragg grating      graphene cladding      refractive index  
Received:  25 September 2018      Revised:  16 October 2018      Accepted manuscript online: 
PACS:  63.22.Rc (Phonons in graphene)  
  68.65.Pq (Graphene films)  
  78.67.Wj (Optical properties of graphene)  
  42.81.-i (Fiber optics)  
Fund: 

Project supported by the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2009AM017 and ZR2013FM019), the National Postdoctoral Project of China (Grant Nos. 200902574 and 20080441150), the Fund from the Educational Department of Shandong Province, China (Grant No. J06P14), and the Opening Foundation of State Key Laboratory of Minning Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology of China (Grant No. MDPC201602).

Corresponding Authors:  Lijun Li     E-mail:  nankaillj@163.com

Cite this article: 

Lijun Li(李丽君), Yilin Liu(刘仪琳), Yinming Liu(刘荫明), Lin Xu(徐琳), Fei Yu(于飞), Tianzong Xu(徐天纵), Zhihui Shi(石志辉), Weikang Jia(贾伟康) Multilayer graphene refractive index tuning by optical power 2018 Chin. Phys. B 27 126304

[1] Zhou S Y, Gheon G H, Graf J, Fedorov A V, Spataru C D, Diehl R D, Kopelevch Y, Lee D H, Steven G L and Lanzara A 2017 Sci. Adv. 3 1
[2] Zheng R L, Cheng Z F 2016 Chin. Phys. Lett. 33 046501
[3] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Staiber T N, Peres M R and Geim A K 2008 Science 320 1308
[4] He Y L, Shi G, Zhang J W and Jiang D Z 2017 Chin. Phys. B 26 106502
[5] Berardi S R, Yan R S, Michellen M K, Fang T, Tahy K and Hwang W S 2012 Nat. Commun. 3 708
[6] Jamil A, Mustafa F, Aslam S, Arshad U and Ashfaq A M 2017 Chin. Phys. B 26 086501
[7] Koester S J and Li M 2014 Quantum Electron. 20 6000211
[8] Koo J, Park J, Song Y W, Lee S, Lee K and Lee J H 2015 Opt. Mater. 46 324
[9] Yang P, Wang X L, Li P, Wang H, Zhang L Q and Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese)
[10] Mark K F, Matthew Y S, Lui C H, Misewich J A and Heinz T F 2008 Phys. Rev. Lett. 101 196405
[11] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[12] Liu M, Yin X B, Erick U A, Geng B S, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[13] Li W, Chen B G, Meng C, Fang W, Xiao Y, Li X Y, Hu Z F, Xu Y X, Tong L M, Wang H Q, Liu W T, Bao J M and Shen Y R 2014 Nano Lett. 14 955
[14] McCann E and Fal’ko V I 2006 Phys. Rev. Lett. 96 086805
[15] McCann E, Kechedzhi K, Fal’ko V I, Suzuura H, Ando T and Altshuler B L 2006 Phys. Rev. Lett. 97 146805
[16] Kosino M and Ando T 2009 Solid State Commun. 149 1123
[17] Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[18] Zhang Y Z, Liu T, Meng B, Li X H, Liang G Z, Hu X N and Wang Q J 2013 Nat. Commun. 7 1
[19] Higuchi T, Heide C, Ullmann K, Weber H B and Hommelhoff P 2017 Nature 550 224
[20] Liu M, Yin X B and Zhang X 2012 Nano Lett. 12 1482
[21] Sanctis A D, Jones G F, Wehenkel D J, Bezares F, Koppens F H L and Craciun M F 2017 Sci. Adv. 3 1
[22] Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206
[23] Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L and Basov D N 2008 Nat. Phys. 4 532
[24] Iadicicco A, Cusano A, Campopiano S, Cutolo A and Giordano M 2005 IEEE Sensors J. 5 1288
[25] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[26] Li L J, Gong S S, Liu Y L, Xu L, Li W X, Ma Q, Ding X Z and Guo X L 2017 Chin. Phys. B 26 116540
[27] Bao Q, Zhang H, Wang B, Ni Zh, Lim C, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[5] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[6] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
[7] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[8] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[9] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[10] Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics
Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星). Chin. Phys. B, 2020, 29(11): 117401.
[11] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
[12] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[13] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[14] Hollow and filled fiber bragg gratings in nano-bore optical fibers
Yong-Xin Zhang(张永欣), Sheng Liang(梁生), Qian-Qing Yu(余倩卿), Zheng-Gang Lian(廉正刚), Zi-Nian Dong(董梓年), Xuan Wang(王旋), Yu-Qin Lin(林裕勤), Yu-Qi Zou(邹郁祁), Kun Xing(邢坤), Liu-Yan Liang(梁柳雁), Xiao-Ting Zhao(赵小艇), Li-Jing Tu(涂立静). Chin. Phys. B, 2019, 28(7): 074210.
[15] A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Huan Tong(童欢), Xudong Yang(杨旭东), Xiaoxiong Wu(吴枭雄), Zhiyuan Pang(庞志远), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2019, 28(4): 044201.
No Suggested Reading articles found!