1 Key Laboratory of Education Ministry on Luminescence and Optical Information Technology, National Physical Experiment Teaching Demonstration Center, Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, China;
2 Yangtze Optical Electronic Company Ltd., Wuhan 430205, China;
3 Wuhan University of Technology, Wuhan 430070, China;
4 Anhui Agricultural University, Hefei 230036, China
To combine the technical functions and advantages of solid-core fiber Bragg gratings (FBGs) and hollow-core optical fibers (HCFs), the hollow and filled FBGs in nano-bore optical fibers (NBFs) with nano-bore in the GeO2-doped core are proposed. The fundamental mode field, effective mode index, and confinement loss of NBF with 50 nm-7 μ-diameter hollow and filled nano-bore are numerically investigated by the finite element method. The reflected spectra of FBGs in NBFs are obtained by the transmission matrix method. The hollow FBGs in NBFs can be acheived with~5% power fraction in the bore and the~0.9 reflectivity when bore diameter is less than 3 μ. The filled FBGs can be realized with~1% power fraction and 0.98 reflectivity with different fillings including o-xylene, trichloroethylene, and chloroform for 800-nm bore diameter. The feasibility of the index sensing by our proposed NBF FBG is also analyzed and discussed. The experimental fabrication of hollow and filled FBGs are discussed and can be achieved by current techniques. The aim of this work is to establish a principle prototype for investigating the HCFs and solid-core FBGs-based fiber-optic platforms, which are useful for applications such as the simultaneous chemical and physical sensing at the same position.
Project supported by the Beijing Natural Science Foundation, China (Grant No. 4192047), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2018JBM070 and 2018JBM065), and the National Natural Science Foundation of China (Grant No. 61675019).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.