Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 074210    DOI: 10.1088/1674-1056/28/7/074210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Hollow and filled fiber bragg gratings in nano-bore optical fibers

Yong-Xin Zhang(张永欣)1, Sheng Liang(梁生)1, Qian-Qing Yu(余倩卿)2,3, Zheng-Gang Lian(廉正刚)2, Zi-Nian Dong(董梓年)1, Xuan Wang(王旋)1, Yu-Qin Lin(林裕勤)1, Yu-Qi Zou(邹郁祁)1, Kun Xing(邢坤)1, Liu-Yan Liang(梁柳雁)1, Xiao-Ting Zhao(赵小艇)4, Li-Jing Tu(涂立静)4
1 Key Laboratory of Education Ministry on Luminescence and Optical Information Technology, National Physical Experiment Teaching Demonstration Center, Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, China;
2 Yangtze Optical Electronic Company Ltd., Wuhan 430205, China;
3 Wuhan University of Technology, Wuhan 430070, China;
4 Anhui Agricultural University, Hefei 230036, China
Abstract  

To combine the technical functions and advantages of solid-core fiber Bragg gratings (FBGs) and hollow-core optical fibers (HCFs), the hollow and filled FBGs in nano-bore optical fibers (NBFs) with nano-bore in the GeO2-doped core are proposed. The fundamental mode field, effective mode index, and confinement loss of NBF with 50 nm-7 μ-diameter hollow and filled nano-bore are numerically investigated by the finite element method. The reflected spectra of FBGs in NBFs are obtained by the transmission matrix method. The hollow FBGs in NBFs can be acheived with~5% power fraction in the bore and the~0.9 reflectivity when bore diameter is less than 3 μ. The filled FBGs can be realized with~1% power fraction and 0.98 reflectivity with different fillings including o-xylene, trichloroethylene, and chloroform for 800-nm bore diameter. The feasibility of the index sensing by our proposed NBF FBG is also analyzed and discussed. The experimental fabrication of hollow and filled FBGs are discussed and can be achieved by current techniques. The aim of this work is to establish a principle prototype for investigating the HCFs and solid-core FBGs-based fiber-optic platforms, which are useful for applications such as the simultaneous chemical and physical sensing at the same position.

Keywords:  nano-bore optical fiber      fiber Bragg grating (FBG)      hollow-core optical fiber (HCF)      fiber optics  
Received:  22 April 2019      Revised:  21 May 2019      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.81.Wg (Other fiber-optical devices)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: 

Project supported by the Beijing Natural Science Foundation, China (Grant No. 4192047), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2018JBM070 and 2018JBM065), and the National Natural Science Foundation of China (Grant No. 61675019).

Corresponding Authors:  Sheng Liang     E-mail:  shliang@bjtu.edu.cn

Cite this article: 

Yong-Xin Zhang(张永欣), Sheng Liang(梁生), Qian-Qing Yu(余倩卿), Zheng-Gang Lian(廉正刚), Zi-Nian Dong(董梓年), Xuan Wang(王旋), Yu-Qin Lin(林裕勤), Yu-Qi Zou(邹郁祁), Kun Xing(邢坤), Liu-Yan Liang(梁柳雁), Xiao-Ting Zhao(赵小艇), Li-Jing Tu(涂立静) Hollow and filled fiber bragg gratings in nano-bore optical fibers 2019 Chin. Phys. B 28 074210

[33] Mishra V, Singh S P, Haldar R and Varshney S K 2016 IEEE J. Sel. Top. Quantum Electron. 22 208
[1] Erdogan T 1997 J. Lightwave Technol. 15 1277
[34] Cucinotta A, Selleri S, Vincetti L and Zoboli M 2002 J. Lightwave Technol. 20 1433
[2] Tosi D 2018 Sensors 18 2147
[35] Ruan Y, Afshar S and Monro T M 2011 IEEE Photon. J. 3 130
[3] Caucheteur C, Guo T and Albert J 2017 J. Lightwave Technol. 35 3311
[36] Limberger H G, Fonjallaz P Y, Salathe R P and Cochet F 1996 Appl. Phys. Lett. 68 3069
[4] Wen S Z, Xiong W C, Huang L P, Wang Z R, Zhang X B and He Z H 2018 Chin. Phys. B 27 090701
[37] Riant I and Poumellec B 1998 Electron. Lett. 34 1603
[5] Jiang B Q, Bi Z X, Wang S H, Xi T L, Zhou K M, Zhang L and Zhao J L 2018 Chin. Phys. B 27 114220
[38] Liang S, Tjin S C, Ngo N Q, Zhang C X and Li L J 2009 Opt. Commun. 282 1363
[6] Mihailov S J, Smelser C W, Lu P, Walker R B, Grobnic D, Ding H M, Henderson G and Unruh J 2003 Opt. Lett. 28 995
[39] Saunders J E, Sanders C, Chen H and Loock H P 2016 Appl. Opt. 55 947
[7] Baghdasaryan T, Geernart T, Morana A, Marin E, Girard S, Makara M, Mergo P, Thienpont H and Berghmans F 2018 Opt. Express 26 14741
[40] Malo B, Theriault S, Johnson D C, Bilodeau F, Albert J and Hill K O 1995 Electron. Lett. 31 223
[8] Dochow S, Latka I, Becker M, Spittel R, Kobelke J, Schuster K, Graf A, Brückner S, Unger S, Rothhardt M, Dietzek B, Krafft C and Popp J 2012 Opt. Express 20 20156
[9] Birks T A, Mangan B J, Diez A, Cruz J L and Murphy D F 2012 Opt. Express 20 13996
[10] Shivananju B N, Yamdagni S, Fazuldeen R, Kumar A K S, Hegde G M, Varma M M and Asokan S 2013 Rev. Sci. Instrum. 84 065002
[11] Zhang J H, Liu N L, Wang Y, Ji L L and Lu P X 2012 Chin. Phys. Lett. 29 074205
[12] Berghmans F, Geernaert T, Baghdasaryan T and Thienpont H 2014 Laser & Photon. Rev. 8 27
[13] Wang J, Liu Z Y, Gao S R, Zhang A P, Shen Y H and Tam H Y 2016 J. Lightwave Technol. 34 4884
[14] Zhang A P, Yan G F, Gao S R, He S L, Kim B, Im J and Chung Y 2011 Appl. Phys. Lett. 98 221109
[15] Xiang H L and Jiang Y J 2018 OPTIK 171 9
[16] Silva R E, Becker M, Rothhardt M, Bartelt H and Pohl A A P 2017 IEEE Photon. J. 9 7801209
[17] Da Silva R E, Becker M, Rothhardt M, Bartelt H and Pohl A A P 2018 J. Lightwave Technol. 36 4146
[18] Wang C, He J, Zhang J C, Liao C R, Wang Y, Jin W, Wang Y P and Wang J H 2017 Opt. Express 25 28442
[19] Wang C, Zhang J C, Zhang C Z, He J, Lin Y C, Jin W, Liao C R, Wang Y and Wang Y P 2018 J. Lightwave Technol. 36 2920
[20] Mihailov S J, Hnatovsky C, Grobnic D, Chen K and Li M J 2018 IEEE Photon. Technol. Lett. 30 209
[21] Li Y H, Chen W, Wang H Y, Liu N L and Lu P X 2011 J. Lightwave Technol. 29 3367
[22] Yu X, Yan M, Ren G B, Tong W J, Cheng X P, Zhou J Q, Shum P P and Ngo N Q 2009 J. Lightwave Technol. 27 1548
[23] Zhang X P and Peng W 2015 IEEE Photon. Technol. Lett. 27 391
[24] Mao G P, Yuan T T, Guan C Y, Yang J, Chen L, Zhu Z, Shi J H and Yuan L B 2017 Opt. Express 25 144
[25] Warren-Smith S C and Monro T M 2014 Opt. Express 22 1480
[26] Zhao P, Li Y H, Zhang J H, Shi L and Zhang X L 2012 Opt. Express 20 28625
[27] Schaarschmidt K, Weidlich S, Reul D and Schmidt M A 2018 Opt. Lett. 43 4192
[28] Jiang S, Schaarschmidt K, Weidlich S and Schmidt M A 2018 J. Lightwave Technol. 36 3970
[29] Faez S, Lahini Y, Weidlich S, Garmann R F, Wondraczek K, Zeisberger M, Schmidt M A, Orrit M and Manoharan V N 2015 ACS Nano 9 12349
[30] Tuniz A, Jain C, Weidlich S and Schmidt M A 2016 Opt. Lett. 41 448
[31] Ruan Y L, Ebendorff-Heidepriem H, Afshar S and Monro T M 2010 Opt. Express 18 26018
[32] Singh S P, Mishra V, Datta P K and Varshney S K 2015 J. Lightwave Technol. 33 55
[33] Mishra V, Singh S P, Haldar R and Varshney S K 2016 IEEE J. Sel. Top. Quantum Electron. 22 208
[34] Cucinotta A, Selleri S, Vincetti L and Zoboli M 2002 J. Lightwave Technol. 20 1433
[35] Ruan Y, Afshar S and Monro T M 2011 IEEE Photon. J. 3 130
[36] Limberger H G, Fonjallaz P Y, Salathe R P and Cochet F 1996 Appl. Phys. Lett. 68 3069
[37] Riant I and Poumellec B 1998 Electron. Lett. 34 1603
[38] Liang S, Tjin S C, Ngo N Q, Zhang C X and Li L J 2009 Opt. Commun. 282 1363
[39] Saunders J E, Sanders C, Chen H and Loock H P 2016 Appl. Opt. 55 947
[40] Malo B, Theriault S, Johnson D C, Bilodeau F, Albert J and Hill K O 1995 Electron. Lett. 31 223
[1] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[2] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[3] Cascaded tilted fiber Bragg grating for enhanced refractive index sensing
Biqiang Jiang(姜碧强), Zhixuan Bi(毕芷瑄), Shouheng Wang(王守恒), Teli Xi(席特立), Kaiming Zhou, Lin Zhang, Jianlin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 114220.
[4] Gamma-radiation effects in pure-silica-core photonic crystal fiber
Wei Cai(蔡伟), Ningfang Song(宋凝芳), Jing Jin(金靖), Jingming Song(宋镜明), Wei Li(李伟), Wenyong Luo(罗文勇), Xiaobin Xu(徐小斌). Chin. Phys. B, 2017, 26(11): 114211.
[5] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[6] Different supercontinuum generation processes in photonic crystal fibers pumped with a 1064-nm picosecond pulse
Chen Hong-Wei (谌鸿伟), Jin Ai-Jun (靳爱军), Chen Sheng-Ping (陈胜平), Hou Jing (侯静), Lu Qi-Sheng (陆启生). Chin. Phys. B, 2013, 22(8): 084205.
[7] Optimization of highly nonlinear dispersion-flattened photonic crystal fiber for supercontinuum generation
Zhang Ya-Ni (张亚妮). Chin. Phys. B, 2013, 22(1): 014214.
[8] Mode field diameter and nonlinear properties of air-core nanowires
Hu Xiao-Hong(胡晓鸿), Zhao Wei(赵卫), Gong Yong-Kang(宫永康), Wang Lei-Ran(王擂然), Lu Ke-Qing(卢克清), and Liu Xue-Ming(刘雪明). Chin. Phys. B, 2009, 18(8): 3183-3188.
No Suggested Reading articles found!