Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 126303    DOI: 10.1088/1674-1056/27/12/126303
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice

Serge Bruno Yamgoué1, Guy Roger Deffo2, Eric Tala-Tebue3, François Beceau Pelap2
1 Department of Physics, Higher Teacher Training College Bambili, The University of Bamenda, P. O. Box 39, Bamenda Cameroon;
2 Unitéde Recherche de Mécanique et de Modélisation des Systèmes Physiques(UR-2 MSP), Faculte des Sciences, Universitéde Dschang, BP 69 Dschang, Cameroun;
3 Department of Telecommunication and Network Engineering, Fotso Victor University Institute of Technology, The University of Dschang, P. O. Box 134, Bandjoun, Cameroon
Abstract  

In this paper, we introduce and propose exact and explicit analytical solutions to a novel model of the nonlinear Schrödinger (NLS) equation. This model is derived as the equation governing the dynamics of modulated cutoff waves in a discrete nonlinear electrical lattice. It is characterized by the addition of two terms that involve time derivatives to the classical equation. Through those terms, our model is also tantamount to a generalized NLS equation with saturable; which suggests that the discrete electrical transmission lines can potentially be used to experimentally investigate wave propagation in media that are modeled by such type of nonlinearity. We demonstrate that the new terms can enlarge considerably the forms of the solutions as compared to similar NLS-type equations. Sine-Gordon expansion-method is used to derive numerous kink, antikink, dark, and bright soliton solutions.

Keywords:  nonlinear Schrö      dinger equation, nonlinear time derivative terms, saturable nonlinearity, exact solitary solutions  
Received:  10 August 2018      Revised:  26 September 2018      Accepted manuscript online: 
PACS:  63.20.Pw (Localized modes)  
Corresponding Authors:  Serge Bruno Yamgou     E-mail:  sergebruno@yahoo.fr

Cite this article: 

Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice 2018 Chin. Phys. B 27 126303

[1] Alejandro B A, Gadi F and Boaz I 2004 Physica D: Nonlinear Phenomena 189 277
[2] Alidou M, Kenfack-Jiotsa A and Kofane T C 2006 Chaos, Solitons and Fractals 27 914
[3] Li S, Wang J P, Kang Z and Yu C X 2015 Chin. Phys. B 24 084212
[4] Yang C, Li W, Yu W, Liu M, Zhang Y, Ma G, Lei M and Liu W 2018 Nonlinear Dyn. 92 203
[5] Nath R, Pedri P and Santos L 2008 Phys. Rev. Lett. 101 210402
[6] Kinstrie C J M and Bingham R 1989 Phys. Fluids B: Plasma Physics 1 230
[7] Ndjoko P B, Bilbault J M, Binczak S and Kofane T C 2012 Phys. Rev. E 85 011916
[8] Wang Y Y, Chen L, Dai C Q, Zheng J and Fan Y 2017 Nonlinear Dyn. 90 1269
[9] Xu Q and Qiang T 2009 Chin. Phys. Lett. 26 070501
[10] Huang L F, Li Y L, Ni M Y, Wang X L, Zhang G R and Zeng Z 2009 Acta Phys. Sin. 58 306 (in Chinese)
[11] Xu Q and Tian Q 2013 Chin. Phys. B 22 086302
[12] Xu Q and Tian Q 2010 Chin. Phys. Lett. 27 020505
[13] Xie H, Zhao Y W, Liu T, Dong Z Y, Yang J and Liu J M 2015 Chin. Phys. B 24 107704
[14] Wang X J, Liu J F, Luo Y F and Li S 2010 Chin. Phys. Lett. 27 016301
[15] Chen A L, Liang T L and Wang Y S 2015 Chin. Phys. B 24 066101
[16] Guo H, Li Q, Zhou L and Qiang L 2018 Chin. Phys. B 27 036302
[17] Pelap F B, Kofané C T, Flytzanis N and Remoissenet M 2001 J. Phys. Soc. Jpn. 70 2568
[18] Pelap F B and Faye M M 2005 Nonlinear Oscillations 8 513
[19] Kengne E and Liu W M 2006 Phys. Rev. E 73 026603
[20] Pelap F B and Faye M M 2007 J. Phys. Soc. Jpn. 76 074602
[21] Zhao G, Tao F and Chen W 2016 Chin. Phys. B 25 044101
[22] Wang Z B, Wu Z Z and Gao C 2015 Chin. Phys. B 24 028503
[23] Jie H, Wenwen G and Qian Z 2017 Chin. Phys. B 26 037306
[24] Yamgoué S B, Deffo G R, Tala-Tebue E and Pelap F B 2018 Chin. Phys. B 27 096301
[25] Yamgoué S B and Pelap F B 2016 Phys. Lett. A 380 2017
[26] Deffo G R, Yamgoué S B and Pelap F B 2018 Eur. Phys. J. B 91 242
[27] Pelap F B, Kamga J H, Yamgoué S B, Ngounou S M and Ndecfo J E 2015 Phys. Rev. E 91 022925
[28] Kengne E, Lakhssassi A and Liu W M 2017 Phys. Rev. E 96 022221
[29] Yeméle D, Marquié P and Bilbault J M 2003 Phys. Rev. E 68 016605
[30] Maluckov A, Hadžievski L, Lazarides N and Tsironis G P 2008 Phys. Rev. E 77 046607
[31] Yuanjiang X, Xiaoyu D, Shuangchun W and Fan D 2011 J. Opt. Soc. Am. 28 908
[32] Kevrekidis P G 2011 IMA J. Appl. Math. 76 389
[33] Zhong X Q, Cheng K and Xiang A P 2013 Chin. Phys. B 22 034205
[34] Shi W, Shige S, Soga Y, Sato M and Sievers A J 2013 Europhys. Lett. 103 30006
[35] Liu W, Liu M, Yang Y O, Hou H, Ma G, Lei M and Wei Z 2018 Nanotechnology 29 174002
[36] Wang Y Y, Dai C Q, Xu Y Q, Zheng J and Fan Y 2018 Nonlinear Dyn. 92 1261
[37] Liu W, Zhu Y N, Liu M, Wen B, Fang S, Teng H, Lei M, Liu L M and Wei Z 2018 Photon. Res. 3 220
[38] Cui W N, Zhu Y Y, Li H X and Liu S M 2010 Chin. Phys. Lett. 27 114101
[39] Cui W N, Li H X, Sun M and Zhu Y Y 2016 Chin. Phys. Lett. 33 124101
[40] Zhang R and Yang Y P 2010 Acta Phys. Sin. 59 2451 (in Chinese)
[41] Huang C F, Guo R, and Liu S M 2007 Acta Phys. Sin. 56 908 (in Chinese)
[42] Huang C F, Guo R, and Liu S M 2006 Acta Phys. Sin. 55 1218 (in Chinese)
[43] Beléndez A, Beléndez T, Martínez F J, Pascual C, Alvarez M L and Arribas E 2016 Nonlinear Dyn. 86 1687
[44] Elías-Zúñiga A 2013 Appl. Math. Model. 37 2574
[45] Onana Essama B G, Atangana J, Mokhtari B, Cherkaoui Eddeqaqi N and Kofane T C 2013 Opt. Quantum Electron 46 911
[46] Saidou A, Alidou M, Ousmanou D and Yamigno D S 2014 Chin. Phys. B 23 120506
[47] Tala-Tebue E, Tsobgni-Fozap D C, Kenfack-Jiotsa A and Kofane T C 2014 Eur. Phys. J. Plus 129 136
[48] Zayed Elsayed M E, Amer Y A and Shohib Reham M A 2015 Scientific Research and Essays 10 218
[49] Kumar H and Chand F 2014 J. Theor. Appl. Phys. 8 1
[50] Li J and Chen F 2015 Int. J. Bifur. Chaos 25 1550045
[51] Li J and Jiang L 2015 Int. J. Bifur. Chaos 25 1550016
[52] Tala-Tebue E, Djoufack Z I, Fendzi-Donfack E, Kenfack-Jiotsa A and Kofané T C 2016 Optik-International Journal for Light and Electron Optics 127 11124
[53] El-Wakil S A and Abdou M A 2008 Nonlinear Analysis: Theory, Methods and Applications 68 235
[54] Zhang B, Zhang X L and Dai C Q 2017 Nonlinear Dyn. 87 2385
[55] Manafian J and Lakestani M 2016 Optik-International Journal for Light and Electron Optics 127 9603
[56] Melike K and Mehmet N O 2018 Opt. Quantum Electron 50 2
[57] Ma W X and Lee J H 2009 Chaos, Solitons and Fractals 42 1356
[58] Najafi M and Arbabi S 2014 Commun. Theor. Phys. 62 301
[59] Ma W X and Zhou Y 2018 Journal of Differential Equations 264 2633
[60] Zhao H Q and Ma W X 2017 Comput. Math. Appl. 74 1399
[61] Ma W X, Yong X and Zhang H Q 2018 Comput. Math. Appl. 75 289
[62] Wang Y Y, Dai C Q, Xu Y Q, Zheng J and Fan Y 2018 Nonlinear Dyn. 92 1261
[63] Ding D J, Jin D Q and Dai C Q 2017 Thermal Science 21 1701
[64] Hosseini K, Kumar D, Kaplan M and Yazdani B E 2017 Commun. Theor. Phys. 68 761
[65] Baskonus H M, Sulaiman T A and Bulut H 2017 Indian J. Phys. 135 327
[66] Ilhan O A, Sulaiman T A, Bulut H and Baskonus H M 2018 Eur. Phys. J. Plus 133 27
[67] Bulut H, Sulaiman T A and Baskonus H M 2017 Eur. Phys. J. Plus 132 459
[68] Yan C 1996 Phys. Lett. A 242 77
[69] Yan Z 1999 Phys. Lett. A 252 291
[70] Baskonus H M 2016 Nonlinear Dyn. 86 177
[71] Marinca V and Heri N 2011 Math. Comput. Model. 53 604
[72] Salas and others A H 2014 Appl. Math. Sci. 8 8781
[73] Manafian J and Lakestanio M 2017 Indian J. Phys. 91 243
[1] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[2] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[3] Solitons in nonlinear systems and eigen-states in quantum wells
Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营), Wen-Li Yang(杨文力). Chin. Phys. B, 2019, 28(1): 010501.
[4] Dynamics of cubic-quintic nonlinear Schrödinger equation with different parameters
Wei Hua(花巍), Xue-Shen Liu(刘学深), Shi-Xing Liu(刘世兴). Chin. Phys. B, 2016, 25(5): 050202.
[5] Nonautonomous solitary-wave solutions of the generalized nonautonomous cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients
He Jun-Rong (何俊荣), Li Hua-Mei (李画眉). Chin. Phys. B, 2013, 22(4): 040310.
[6] A new finite difference scheme for a dissipative cubic nonlinear Schr"odinger equation
Zhang Rong-Pei(张荣培),Yu Xi-Jun(蔚喜军),and Zhao Guo-Zhong(赵国忠). Chin. Phys. B, 2011, 20(3): 030204.
No Suggested Reading articles found!