Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 126701    DOI: 10.1088/1674-1056/27/12/126701
SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University Prev   Next  

Bloch oscillation of Weyl metal along synthetic dimensions

Ye Xiong(熊烨)
Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China
Abstract  

Synthetic dimensions in time (Sambe space) can be utilized in a periodic time-dependent system. By subjecting the system into a time-periodic potential and measuring the physical quantities at distinct time in one period, one is able to simulate the models in higher dimension. To verify this approach, we show that the Bloch oscillation of wave packets along the magnetic field in a three-dimensional (3D) Weyl metal can be simulated on a two-dimensional (2D) insulator. Different from the chiral anomaly, this Bloch oscillation is anisotropic when the initial wave packet is not on the 0-th Landau level.

Keywords:  synthetic dimensions      Weyl metal  
Received:  22 August 2018      Revised:  12 November 2018      Accepted manuscript online: 
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11774177).

Corresponding Authors:  Ye Xiong     E-mail:  xiongye@njnu.edu.cn

Cite this article: 

Ye Xiong(熊烨) Bloch oscillation of Weyl metal along synthetic dimensions 2018 Chin. Phys. B 27 126701

[1] Wu Z, Zhang L, Sun W, et al. 2016 Science 354 83
[2] Eriksson E, Riwar R P, Houzet M, Meyer J S and Nazarov Y V 2017 Phys. Rev. B 95 075417
[3] Meyer J S and Houzet M 2017 Phys. Rev. Lett. 119 136807
[4] Ozawa T and Carusotto I 2017 Phys. Rev. Lett. 118 013601
[5] Ozawa T, Price H M, Goldman N, Zilberberg O and Carusotto I 2016 Phys. Rev. A 93 043827
[6] Riwar R P, Houzet M, Meyer J S and Nazarov Y V 2016 Nat. Commun. 7 11167
[7] Schroer M, Kolodrubetz M, Kindel W, et al. 2014 Phys. Rev. Lett. 113 050402
[8] Wang Q, Xiao M, Liu H, Zhu S and Chan C 2017 Phys. Rev. X 7 031032
[9] Yu J, Xu Z F, Lu R and You L 2016 Phys. Rev. Lett. 116 143003
[10] Zhang D W and Yang X C 2016 Quantum Information Processing 15 1909
[11] Harper P G 1955 Proc. Phys. Soc. London Sect. A 68 874
[12] Lau A and Ortix C 2015 Phys. Rev. Lett. 115 216805
[13] Aubry S and Andr G 1980 Ann. Isr. Phys. Soc. 3 133
[14] Price H M, Zilberberg O, Ozawa T, Carusotto I and Goldman N 2015 Phys. Rev. Lett. 115 195303
[15] Price H M, Zilberberg O, Ozawa T, Carusotto I and Goldman N 2016 Phys. Rev. B 93 245113
[16] Else D V, Bauer B and Nayak C 2016 Phys. Rev. Lett. 117 090402
[17] Erker P, Mitchison M T, Silva R, et al. 2017 Phys. Rev. X 7 031022
[18] Li T, Gong Z X, Yin Z Q, et al. 2012 Phys. Rev. Lett. 109 163001
[19] Shapere A and Wilczek F 2012 Phys. Rev. Lett. 109 160402
[20] Watanabe H and Oshikawa M 2015 Phys. Rev. Lett. 114 251603
[21] Budich J C, Hu Y and Zoller P 2017 Phys. Rev. Lett. 118 105302
[22] Dehghani H and Mitra A 2016 Phys. Rev. B 93 205437
[23] Else D, Bauer B and Nayak C 2017 Phys. Rev. X 7 011026
[24] Floquet G 1883 On Linear Differential Equation with Periodic Coefficients (Annales Scientifiques de l'cole Normale Suprieure)
[25] Harper F and Roy R 2017 Phys. Rev. Lett. 118 115301
[26] Khemani V, Lazarides A, Moessner R and Sondhi S L 2016 Phys. Rev. Lett. 116 250401
[27] Kibis O V, Dini K, Iorsh I V and Shelykh I A 2017 Phys. Rev. B 95 125401
[28] Kolodrubetz M, Fregoso B M and Moore J E 2016 Phys. Rev. B 94 195124
[29] Lellouch S, Bukov M, Demler E and Goldman N 2017 Phys. Rev. X 7 021015
[30] Leykam D, Rechtsman M C and Chong Y D 2016 Phys. Rev. Lett. 117 013902
[31] Lindner N H, Berg E and Rudner M S 2017 Phys. Rev. X 7 011018
[32] Martin I, Refael G and Halperin B 2017 Phys. Rev. X 7 041008
[33] Mori T, Kuwahara T and Saito K 2016 Phys. Rev. Lett. 116 120401
[34] Morimoto T, Po H C and Vishwanath A 2017 Phys. Rev. B 95 195155
[35] Nandy S, Sen A and Sen D 2017 Phys. Rev. X 7 031034
[36] Po H C, Fidkowski L, Morimoto T, Potter A C and Vishwanath A 2016 Phys. Rev. X 6 041070
[37] Potirniche I D, Potter A C, Schleier M, Vishwanath A and Yao N Y 2017 Phys. Rev. Lett. 119 123601
[38] Potter A C and Morimoto T 2017 Phys. Rev. B 95 155126
[39] Restrepo S, Cerrillo J, Bastidas V M, Angelakis D G and Brandes T 2016 Phys. Rev. Lett. 117 250401
[40] Roy R and Harper F 2016 Phys. Rev. B 94 125105
[41] Roy R and Harper F 2017 Phys. Rev. B 95 195128
[42] Roy R and Harper F 2017 Phys. Rev. B 96 155118
[43] Von Keyserlingk C W and Sondhi S L 2016 Phys. Rev. B 93 245145
[44] Novičenko V, Anisimovas E and Juzeliūnas G 2017 Phys. Rev. A 95 023615
[45] Sambe H 1973 Phys. Rev. A 7 2203
[1] Quantum degenerate Bose-Fermi atomic gas mixture of 23Na and 40K
Ziliang Li(李子亮), Zhengyu Gu(顾正宇), Zhenlian Shi(师振莲), Pengjun Wang(王鹏军), and Jing Zhang(张靖). Chin. Phys. B, 2023, 32(2): 023701.
[2] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[3] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[4] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[5] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[6] Observation of the BEC-BCS crossover in a degenerate Fermi gas of lithium atoms
Xiang-Chuan Yan(严祥传), Da-Li Sun(孙大立), Lu Wang(王璐), Jing Min(闵靖), Shi-Guo Peng(彭世国), and Kai-Jun Jiang(江开军). Chin. Phys. B, 2022, 31(1): 016701.
[7] Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas
Fachao Hu(胡发超), Canzhu Tan(檀灿竹), Yuhai Jiang(江玉海), Matthias Weidemüller, and Bing Zhu(朱兵). Chin. Phys. B, 2022, 31(1): 016702.
[8] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[9] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[10] Superfluid phases and excitations in a cold gas of d-wave interacting bosonic atoms and molecules
Zehan Li(李泽汉), Jian-Song Pan, and W Vincent Liu. Chin. Phys. B, 2021, 30(6): 066703.
[11] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[12] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[13] Accelerate Bose-Einstein condensate by interaction
Jie-Li Qin(秦杰利). Chin. Phys. B, 2019, 28(12): 126701.
[14] Propagation of dark soliton interacting with domain wall in two immiscible Bose-Einstein condensates
Lang Zheng(郑浪), Yi-Cai Zhang(张义财), Chao-Fei Liu(刘超飞). Chin. Phys. B, 2019, 28(11): 116701.
[15] Expansion dynamics of a spherical Bose-Einstein condensate
Rui-Zong Li(李睿宗), Tian-You Gao(高天佑), Dong-Fang Zhang(张东方), Shi-Guo Peng(彭世国), Ling-Ran Kong(孔令冉), Xing Shen(沈星), Kai-Jun Jiang(江开军). Chin. Phys. B, 2019, 28(10): 106701.
No Suggested Reading articles found!