INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Unidirectional rotation of circles driven by chiral active particles |
Jiamin Chen(陈佳敏), Xiaolin Zhou(周晓琳), Linxi Zhang(章林溪) |
Department of Physics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The dynamics of two-dimensional rigid circles filled with chiral active particles are investigated by employing the overdamped Langevin dynamics simulations. Unidirectional rotation of rigid circles is observed, and the rotational angular velocity (ω') relies mainly on the length (l), the number (nB), and tilt angle (γ) of boards, and the angular velocity (ω) and area fraction (ρ) of chiral active particles. There are optimum values for these parameters at which the average angular velocity of circle reaches its maximum. The center-of-mass mean square displacement for circles drops by about two orders of magnitude for large angular velocity ω of chiral active particles with oscillations in the short-time regime. Our work demonstrates that nanofabricated objects with suitable designs immersed in a bath of chiral active particles can extract and rectify energy in a unidirectional motion.
|
Received: 21 June 2018
Revised: 03 September 2018
Accepted manuscript online:
|
PACS:
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
87.85.St
|
(Robotics)
|
|
87.85.Va
|
(Micromachining)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21674096 and 21873082). |
Corresponding Authors:
Linxi Zhang
E-mail: lxzhang@zju.edu.cn
|
Cite this article:
Jiamin Chen(陈佳敏), Xiaolin Zhou(周晓琳), Linxi Zhang(章林溪) Unidirectional rotation of circles driven by chiral active particles 2018 Chin. Phys. B 27 118701
|
[1] |
Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
|
[2] |
Peruani F, Starruß J, Jakovljevic V and Bär M 2012 Phys. Rev. Lett. 108 098102
|
[3] |
Cavagna A and Giardina I 2014 Annu. Rev. Condens. Matter Phys. 5 183
|
[4] |
Gueron S, Levin S A and Rubenstein D I 1996 J. Theor. Biol. 182 85
|
[5] |
Purcell E M 1977 Am. J. Phys. 45 3
|
[6] |
Erdmann U, Ebeling W, Schimansky-Geier and Schweitzer F 2000 Eur. Phys. J. B 15 105
|
[7] |
Ford R M and Harvey R W 2007 Adv. Water Res. 30 1608
|
[8] |
Chen J X, Chen Y G and Ma Y Q 2016 Soft Matter 12 1876
|
[9] |
Yang W, Misko V R, Nelissen K, Kong M and Peeters F M 2012 Soft Matter 8 5175
|
[10] |
Ghosh A and Fischer P 2009 Nano Lett. 9 2243
|
[11] |
Ezhilan B, Gao W, Pei A, et al. 2015 Nanoscale 7 7833
|
[12] |
Chin C D, Linder V and Sia S K 2007 Lab Chip 7 41
|
[13] |
Teeffelen S and Löwen H 2008 Phys. Rev. E 78 020101
|
[14] |
Mijalkov M and Volpe G 2013 Soft Matter 9 6376
|
[15] |
Sevilla F J 2016 Phys. Rev. E 94 062120
|
[16] |
Grzybowski B A and Whitesides G M 2002 Science 296 718
|
[17] |
Grier D G 1997 Curr. Opin. Colloid Interface Sci. 2 264
|
[18] |
Riedel I H, Kruse K and Howard J 2005 Science 309 300
|
[19] |
Drescher K, Leptos K C, Tuval I, et al. 2009 Phys. Rev. Lett. 102 168101
|
[20] |
Lauga E, DiLuzio W R, Whitesides G M and Stone H A 2006 Biophys. J. 90 400
|
[21] |
Wang J, Chen Y, Yu W and Luo K 2016 J. Chem. Phys. 144 204702
|
[22] |
Ai B Q 2016 Sci. Rep. 6 18740
|
[23] |
Redner G S, Hagan M F and Baskaran A 2013 Phys. Rev. Lett. 110 055701
|
[24] |
Nguyen N H P, Klotsa D, Engel M and Glotzer S C 2014 Phys. Rev. Lett. 112 075701
|
[25] |
Narayan V, Ramaswamy S and Menon N 2007 Science 317 105
|
[26] |
Wioland H, Woodhouse F G, Dunkel J, et al. 2013 Phys. Rev. Lett. 110 268102
|
[27] |
Tian W D, Guo Y K, Chen K and Ma Y Q 2015 arXiv 1511.08573
|
[28] |
Spellings M, Engel M, Klotsa D, et al. 2015 Proc. Natl. Acad. Sci. USA 112 E4642
|
[29] |
Paoluzzi M, Leonardo R D, Marchetti M C and Angelani L 2016 Sci. Rep. 6 34146
|
[30] |
Chen J M, Hua Y F, Jiang Y W and Zhang L X 2017 Sci. Rep. 7 15006
|
[31] |
Hua Y F, He L L and Zhang L X 2017 Chin. Phys. B 26 080702
|
[32] |
Hua Y F, Li K, Zhou X L, He L L and Zhang L X 2018 Soft Matter 14 5205
|
[33] |
Leonardo R D, Angelani L, Arciprete D D, et al. 2010 Proc. Natl. Acad. Sci. USA 107 9541
|
[34] |
Sokolov A, Apodaca M M, Grzybowski B A and Aranson I S 2010 Proc. Natl. Acad. Sci. USA 107 969
|
[35] |
Li H and Zhang H P 2013 Europhys. Lett. 102 50007
|
[36] |
Wu J C, Chen Q and Ai B Q 2015 J. Stat. Mech. 7 P07005
|
[37] |
Deng Z, Zhang D and Zhang L X 2016 Chin. J. Polym. Sci. 34 623
|
[38] |
Volpe G, Gigan S and Volpe G 2014 Am. J. Phys. 82 659
|
[39] |
Dünweg B and Paul W 1991 Int. J. Mod. Phys. C 2 817
|
[40] |
Isele-Holder R E, Elgeti J and Gompper G 2015 Soft Matter 11 7181
|
[41] |
Plimpton S 1995 J. Comput. Phys. 117 1
|
[42] |
Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
|
[43] |
Li H S, Wang C, Tian W D, et al. 2017 Soft Matter 13 8031
|
[44] |
Kremer K and Grest G S 1998 J. Chem. Phys. 92 5057
|
[45] |
Tafoya S and Bustamante C 2018 Philos. Trans. Royal Soc. B 373 20170181
|
[46] |
Kyongwan K, Natsuhiko Y, Sanjib B, et al. 2018 Soft Matter 14 3221
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|