Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118701    DOI: 10.1088/1674-1056/27/11/118701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Unidirectional rotation of circles driven by chiral active particles

Jiamin Chen(陈佳敏), Xiaolin Zhou(周晓琳), Linxi Zhang(章林溪)
Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  

The dynamics of two-dimensional rigid circles filled with chiral active particles are investigated by employing the overdamped Langevin dynamics simulations. Unidirectional rotation of rigid circles is observed, and the rotational angular velocity (ω') relies mainly on the length (l), the number (nB), and tilt angle (γ) of boards, and the angular velocity (ω) and area fraction (ρ) of chiral active particles. There are optimum values for these parameters at which the average angular velocity of circle reaches its maximum. The center-of-mass mean square displacement for circles drops by about two orders of magnitude for large angular velocity ω of chiral active particles with oscillations in the short-time regime. Our work demonstrates that nanofabricated objects with suitable designs immersed in a bath of chiral active particles can extract and rectify energy in a unidirectional motion.

Keywords:  unidirectional rotation      dynamics      chiral active particle      nanofabricated object  
Received:  21 June 2018      Revised:  03 September 2018      Accepted manuscript online: 
PACS:  87.10.Tf (Molecular dynamics simulation)  
  87.85.St (Robotics)  
  87.85.Va (Micromachining)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21674096 and 21873082).

Corresponding Authors:  Linxi Zhang     E-mail:  lxzhang@zju.edu.cn

Cite this article: 

Jiamin Chen(陈佳敏), Xiaolin Zhou(周晓琳), Linxi Zhang(章林溪) Unidirectional rotation of circles driven by chiral active particles 2018 Chin. Phys. B 27 118701

[1] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[2] Peruani F, Starruß J, Jakovljevic V and Bär M 2012 Phys. Rev. Lett. 108 098102
[3] Cavagna A and Giardina I 2014 Annu. Rev. Condens. Matter Phys. 5 183
[4] Gueron S, Levin S A and Rubenstein D I 1996 J. Theor. Biol. 182 85
[5] Purcell E M 1977 Am. J. Phys. 45 3
[6] Erdmann U, Ebeling W, Schimansky-Geier and Schweitzer F 2000 Eur. Phys. J. B 15 105
[7] Ford R M and Harvey R W 2007 Adv. Water Res. 30 1608
[8] Chen J X, Chen Y G and Ma Y Q 2016 Soft Matter 12 1876
[9] Yang W, Misko V R, Nelissen K, Kong M and Peeters F M 2012 Soft Matter 8 5175
[10] Ghosh A and Fischer P 2009 Nano Lett. 9 2243
[11] Ezhilan B, Gao W, Pei A, et al. 2015 Nanoscale 7 7833
[12] Chin C D, Linder V and Sia S K 2007 Lab Chip 7 41
[13] Teeffelen S and Löwen H 2008 Phys. Rev. E 78 020101
[14] Mijalkov M and Volpe G 2013 Soft Matter 9 6376
[15] Sevilla F J 2016 Phys. Rev. E 94 062120
[16] Grzybowski B A and Whitesides G M 2002 Science 296 718
[17] Grier D G 1997 Curr. Opin. Colloid Interface Sci. 2 264
[18] Riedel I H, Kruse K and Howard J 2005 Science 309 300
[19] Drescher K, Leptos K C, Tuval I, et al. 2009 Phys. Rev. Lett. 102 168101
[20] Lauga E, DiLuzio W R, Whitesides G M and Stone H A 2006 Biophys. J. 90 400
[21] Wang J, Chen Y, Yu W and Luo K 2016 J. Chem. Phys. 144 204702
[22] Ai B Q 2016 Sci. Rep. 6 18740
[23] Redner G S, Hagan M F and Baskaran A 2013 Phys. Rev. Lett. 110 055701
[24] Nguyen N H P, Klotsa D, Engel M and Glotzer S C 2014 Phys. Rev. Lett. 112 075701
[25] Narayan V, Ramaswamy S and Menon N 2007 Science 317 105
[26] Wioland H, Woodhouse F G, Dunkel J, et al. 2013 Phys. Rev. Lett. 110 268102
[27] Tian W D, Guo Y K, Chen K and Ma Y Q 2015 arXiv 1511.08573
[28] Spellings M, Engel M, Klotsa D, et al. 2015 Proc. Natl. Acad. Sci. USA 112 E4642
[29] Paoluzzi M, Leonardo R D, Marchetti M C and Angelani L 2016 Sci. Rep. 6 34146
[30] Chen J M, Hua Y F, Jiang Y W and Zhang L X 2017 Sci. Rep. 7 15006
[31] Hua Y F, He L L and Zhang L X 2017 Chin. Phys. B 26 080702
[32] Hua Y F, Li K, Zhou X L, He L L and Zhang L X 2018 Soft Matter 14 5205
[33] Leonardo R D, Angelani L, Arciprete D D, et al. 2010 Proc. Natl. Acad. Sci. USA 107 9541
[34] Sokolov A, Apodaca M M, Grzybowski B A and Aranson I S 2010 Proc. Natl. Acad. Sci. USA 107 969
[35] Li H and Zhang H P 2013 Europhys. Lett. 102 50007
[36] Wu J C, Chen Q and Ai B Q 2015 J. Stat. Mech. 7 P07005
[37] Deng Z, Zhang D and Zhang L X 2016 Chin. J. Polym. Sci. 34 623
[38] Volpe G, Gigan S and Volpe G 2014 Am. J. Phys. 82 659
[39] Dünweg B and Paul W 1991 Int. J. Mod. Phys. C 2 817
[40] Isele-Holder R E, Elgeti J and Gompper G 2015 Soft Matter 11 7181
[41] Plimpton S 1995 J. Comput. Phys. 117 1
[42] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[43] Li H S, Wang C, Tian W D, et al. 2017 Soft Matter 13 8031
[44] Kremer K and Grest G S 1998 J. Chem. Phys. 92 5057
[45] Tafoya S and Bustamante C 2018 Philos. Trans. Royal Soc. B 373 20170181
[46] Kyongwan K, Natsuhiko Y, Sanjib B, et al. 2018 Soft Matter 14 3221
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[9] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[10] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[11] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[12] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[13] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[14] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[15] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
No Suggested Reading articles found!