INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Mechanochemical model for myosin II dimer that can explain the spontaneous oscillatory contraction of muscle |
Wei Sun(孙伟)1,2, Xiao-Yang Zhao(赵晓阳)3,4, Jun-Ping Zhang(张俊萍)1, Tala(塔拉)1, Wei-Sheng Guo(郭维生)1 |
1 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China;
2 Department of Resource Engineering, Ordos Vocational College, Ordos 017000, China;
3 Department of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China;
4 Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010070, China |
|
|
Abstract The spontaneous oscillatory contraction (SPOC) of myofibrils is the essential property inherent to the contractile system of muscle. Muscle contraction results from cyclic interactions between actin filament and myosin Ⅱ which is a dimeric motor protein with two heads. Taking the two heads of myosin Ⅱ as an indivisible element and considering the effects of cooperative behavior between the two heads on rate constants in the mechanochemical cycle, the present work proposes the tenstate mechanochemical cycle model for myosin Ⅱ dimer. The simulations of this model show that the proportion of myosin Ⅱ in different states periodically changes with time, which results in the sustained oscillations of contractive tension, and serves as the primary factor for SPOC. The good fit of this model to experimental results suggests that the cooperative interaction between the two heads of myosin Ⅱ dimer may be one of the underlying mechanisms for muscle contraction.
|
Received: 15 June 2018
Revised: 03 September 2018
Accepted manuscript online:
|
PACS:
|
87.15.R-
|
(Reactions and kinetics)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
82.39.-k
|
(Chemical kinetics in biological systems)
|
|
Fund: Project supported by Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region, China (Grant Nos. NJZY16493 and NJZC17458). |
Corresponding Authors:
Wei-Sheng Guo
E-mail: pygws@imu.edu.cn
|
Cite this article:
Wei Sun(孙伟), Xiao-Yang Zhao(赵晓阳), Jun-Ping Zhang(张俊萍), Tala(塔拉), Wei-Sheng Guo(郭维生) Mechanochemical model for myosin II dimer that can explain the spontaneous oscillatory contraction of muscle 2018 Chin. Phys. B 27 118702
|
[1] |
Yasuda K, Shindo Y and Ishiwata S 1996 Biophys. J. 70 1823
|
[2] |
Wolfe J E, Ishiwata S, Braet F, Whan R, Su Y, Lal S and dos Remedios C G 2011 Biophys. Rev. 3 53
|
[3] |
Kagemoto T, Li A, dos Remedios C G and Ishiwata S 2015 Biophys. Rev. 7 15
|
[4] |
Sasaki D, Fukuda N and Ishiwata S 2006 Biochem. Biophys. Res. Commun. 343 1146
|
[5] |
Shimamoto Y, Kono F, Suzuki M and Ishiwata S 2007 Biophys. J. 93 4330
|
[6] |
Shimamoto Y, Suzuki M and Ishwata S 2008 Biochem. Biophys. Res. Commun. 366 233
|
[7] |
Ishiwata S, Shimamoto Y and Fukuda N 2011 Prog. Biophys. Mol. Biol. 105 187
|
[8] |
Uuml F and Prost L 1997 Phys. Rev. Lett. 78 4510
|
[9] |
Smith D A and Stephenson D G 1994 J. Muscle Res. Cell Motil. 15 369
|
[10] |
Smith D A and Stephenson D G 2009 Biophys. J. 96 3682
|
[11] |
Sato K, Ohtaki M, Shimamoto Y and Ishiwata S 2011 Prog. Biophys. Mol. Biol. 105 199
|
[12] |
Sato K, Kuramoto Y, Ohtaki M, Shimamoto Y and Ishiwata S 2013 Phys. Rev. Lett. 111 108104
|
[13] |
Nakagome K, Sato K, Shintani S A and Ishiwata S 2016 Biophys. Physicobiol. 13 217
|
[14] |
Li J F, Wang Z Q, Li Q K, Xing J J and Wang G D 2016 Chin. Phys. B 25 118701
|
[15] |
Guo W S, Luo L F and Li Q Z 2002 Chem. Phys. Lett. 363 471
|
[16] |
Mansson A, Rassier D and Tsiavaliaris G 2015 Biomed Res. Int. 245154
|
[17] |
Dogan M Y, Can S, Cleary F B, Purde V and Yildiz A 2015 Cell Rep. 10 1967
|
[18] |
Cleary F B, Dewitt M A, Bilyard T, Htet Z M, Belyy V, Chan D D, Chang A Y and Yildiz A 2014 Nat. Commun. 5 4587
|
[19] |
Trivedi D V, Muretta J M, Swenson A M, Davis J P, Thomas D D and Yengo C M 2015 Proc. Natl. Acad. Sci. USA 112 14593
|
[20] |
Zhao X Y, Sun W, Zhang J P, Tala and Guo W S 2014 Biochem. Biophys. Res. Commun. 453 686
|
[21] |
Conibear P B and Geeves M A 1998 Biophys. J. 75 926
|
[22] |
Brunello E, Reconditi M, Elangovan R, Linari M, Sun Y B, Narayanan T, Panine P, Piazzesi G, Irving M and Lombardi V 2007 Proc. Natl. Acad. Sci. USA 104 20114
|
[23] |
Jung H S, Komatsu S, Ikebe M and Craig R 2008 Mol. Biol. Cell 19 3234
|
[24] |
Albet-Torres N, Bloemink M J, Barman T, Candau R, Frolander K, Geeves M A, Golker K, Herrmann C, Lionne C, Piperio C, Schmitz S, Veigel C and Mansson A 2009 J. Biol. Chem. 284 22926
|
[25] |
Mansson A 2010 Biophys. J. 98 1237
|
[26] |
Kull F J and Endow S A 2013 J. Cell Sci. 126 9
|
[27] |
Geeves M A 2016 Biopolymers 105 483
|
[28] |
Lymn R W and Taylor E W 1971 Biochemistry 10 4617
|
[29] |
Spudich J A 1994 Nature 372 515
|
[30] |
Kuehner S and Fischer S 2011 Proc. Natl. Acad. Sci. USA 108 7793
|
[31] |
Mijailovich S M, Nedic D, Svicevic M, Stojanovic B, Walklate J, Ujfalusi Z and Geeves M A 2017 Biophys. J. 112 984
|
[32] |
Gorga J A, Fishbaugher D E and VanBuren P 2003 Biophys. J. 85 2484
|
[33] |
Shorten P R and Sneyd J 2009 Biophys. J. 96 4764
|
[34] |
Illaste A, Laasmaa M, Peterson P and Vendelin M 2012 Biophys. J. 102 739
|
[35] |
Kekenes-Huskey P M, Liao T, Gillette A K, Hake J E, Zhang Y, Michailova A P, McCulloch A D and McCammon J A 2013 Biophys. J. 105 2130
|
[36] |
Bormuth V, Varga V, Howard J and Schaeffer E 2009 Science 325 870
|
[37] |
Linke W A, Ivemeyer M, Mundel P, Stockmeier M R and Kolmerer B 1998 Proc. Natl. Acad. Sci. USA 95 8052
|
[38] |
Linke W A, Stockmeier M R, Ivemeyer M, Hosser H and Mundel P 1998 J. Cell Sci. 111 1567
|
[39] |
Lan G H and Sun S X 2005 Biophys. J. 88 4107
|
[40] |
Hackney D D, Tamanoi F and Sigman D S 2003 Energy Coupling and Molecular Motors (San Diego:Elsevier Academic Press)
|
[41] |
Baker J E, Brosseau C, Joel P B and Warshaw D M 2002 Biophys. J. 82 2134
|
[42] |
Kaya M, Tani Y, Washio T, Hisada T and Higuchi H 2017 Nat. Commun. 8 16036
|
[43] |
Minozzo F C, Altman D and Rassier D E 2015 Biochem. Biophys. Res. Commun. 463 1129
|
[44] |
Linari M, Caremani M and Lombardi V 2010 Proc. R. Soc. B 277 19
|
[45] |
Smith D A and Geeves M A 1995 Biophys. J. 69 538
|
[46] |
Canepari M, Maffei M, Longa E, Geeves M and Bottinelli R 2012 Exp. Physiol. 97 873
|
[47] |
He Z H, Stienen G J M, Barends J P F and Ferenczi M A 1998 Biophys. J. 75 2389
|
[48] |
Joumaa V, Leonard T R and Herzog W 2008 Proc. R. Soc. B 275 1411
|
[49] |
Pavlov I, Novinger R and Rassier D E 2009 Am. J. Physiol. Cell Physiol. 297 C1211
|
[50] |
Linari M, Brunello E, Reconditi M, Fusi L, Caremani M, Narayanan T, Piazzesi G, Lombardi V and Irving M 2015 Nature 528 276
|
[51] |
Piazzesi G, Reconditi M, Linari M, Lucii L, Bianco P, Brunello E, Decostre V, Stewart A, Gore D B and Irving T C 2007 Cell 131 784
|
[52] |
Finer J T, Simmons R M and Spudich J A 1994 Nature 368 113
|
[53] |
Higuchi H, Nakauchi Y, Maruyama K and Fujime S 1993 Biophys. J. 65 1906
|
[54] |
Lin L F, Zhou X W and Ma H 2013 Acta Phys. Sin. 62 240501(in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|