Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117701    DOI: 10.1088/1674-1056/27/11/117701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fabrication and characterization of Ge–Ga–Sb–S glass microsphere lasers operating at~1.9 μm

Kun Yang(杨坤)1, Shixun Dai(戴世勋)1,2, Yuehao Wu(吴越豪)1,2, Qiuhua Nie(聂秋华)1,2
1 Advanced Technology Research Institute, Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211, China;
2 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China
Abstract  

We report the fabrication and characterization of germanium gallium antimony sulfide (Ge-Ga-Sb-S or 2S2G, doped with Tm3+ ions) microsphere lasers operating at~1.9-μm spectral band. Compared to the chalcogenide glasses that are used in previous microsphere lasers, this 2S2G glass has a lower transition temperature and a higher characteristic temperature. This implies that 2S2G microspheres can be fabricated at lower temperatures and the crystallization problem in the sphere-forming process can be alleviated. We show that hundreds of high-quality microspheres (quality factors higher than 105) of various diameters can be produced simultaneously via a droplet sphere-forming method. Microspheres are coupled with silica fiber tapers for optical characterizations. We demonstrate that Whispering Gallery mode (WGM) patterns in the 1.7-2.0 μm band can be conveniently obtained and that once the pump power exceeds a threshold, single-and multi-mode microsphere lasers can be generated. For a typical microsphere whose diameter is 258.64 μm, we demonstrate its laser threshold is 0.383 mW, the laser wavelength is 1907.38 nm, and the thermal sensitivity of the microsphere laser is 29.56 pm/℃.

Keywords:  chalcogenides      microspheres laser      whispering gallery modes  
Received:  11 July 2018      Revised:  16 August 2018      Accepted manuscript online: 
PACS:  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  42.55.Sa (Microcavity and microdisk lasers)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61605094), the Key Program of National Natural Science Foundation of China (Grant No. 61435009), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F050002), and K. C. Wong Magna Fund in Ningbo University, China.

Corresponding Authors:  Yuehao Wu, Qiuhua Nie     E-mail:  wuyuehao@nbu.edu.cn;nieqiuhua@nbu.edu.cn

Cite this article: 

Kun Yang(杨坤), Shixun Dai(戴世勋), Yuehao Wu(吴越豪), Qiuhua Nie(聂秋华) Fabrication and characterization of Ge–Ga–Sb–S glass microsphere lasers operating at~1.9 μm 2018 Chin. Phys. B 27 117701

[1] Tao M, Tao B, Hu Z, Feng G, Ye X and Zhao J 2017 Opt. Exp. 25 32386
[2] Behzadi B, Aliannezhadi M, Hossein-Zadeh M and Jain R K 2017 J. Opt. Soc. Am. B 34 2501
[3] Huang H, Wang H and Shen D 2017 Opt. Mater. Express 7 3147
[4] Sasagawa K, Yonezawa Z, Iwai R, Ohta J and Nunoshita M 2004 Appl. Phys. Lett. 85 4325
[5] Vanier F, Cote F, Amraoui M E, Messaddeq Y, Peter Y A and Rochette M 2015 Opt. Lett. 40 5227
[6] Yang Z, Wu Y, Yang K, Xu P, Zhang W, Dai S and Xu T 2017 Opt. Mater. 72 524
[7] Behzadi B, Jain R K and Hossein-Zadeh M 2017 IEEE J. Quantum Electron. 53 5700109
[8] Behzadi B, Jain R K and Hossein-Zadeh M 2018 Laser Phys. Lett. 15 085112
[9] Deng Y, Jain R K and Hossein-Zadeh M 2014 Opt. Lett. 39 4458
[10] Eggleton B J, Luther-Davies B and Richardson K 2011 Nat. Photon. 5 141
[11] Elliott G R, SenthilMurugan G, WilkinsonJ S, Zervas M N and Hewak D W 2010 Opt. Express 18 26720
[12] Li C, Dai S, Zhang Q, Shen X, Wang X, Zhang P, Lu L, Wu Y and Lv S 2015 Chin. Phy. B 24 044208
[13] Vanier F, Peter Y A and Rochette M 2014 Opt. Express 22 28731
[14] Yang Z, Wu Y, Zhang X, Zhang W, Xu P and Dai S 2017 IEEE Photon. Technol. Lett. 29 66
[15] Schiller S 1993 Appl. Opt. 32 2181
[16] Lam C C, Leung P T and Young K 1992 J. Opt. Soc. Am. B 9 1585
[17] Wang P, Lee T, Ding M, Dhar A, Hawkins T, Foy P, Semenova Y, Wu Q, Sahu J, Farrell G, Ballato J and Brambilla G 2012 Opt. Lett. 37 728
[18] Peng X, Song F, Kuwata-Gonokami M, Jiang S and Peyghambarian N 2003 Appl. Phys. Lett. 83 5380
[19] Milenko K, Konidakis I and Pissadakis S 2016 Opt. Lett. 41 2185
[20] Dong C H, He L, Xiao Y F, Gaddam V R, Ozdemir S K, Han Z F, Guo G C and Yang L 2009 Appl. Phys. Lett. 94 231119
[1] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[2] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[3] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[4] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[5] Growth, characterization, and Raman spectra of the 1T phases of TiTe2, TiSe2, and TiS2
Xiao-Fang Tang(唐筱芳), Shuang-Xing Zhu(朱双兴), Hao Liu(刘豪), Chen Zhang(章晨), Qi-Yi Wu(吴旗仪), Zi-Teng Liu(刘子腾), Jiao-Jiao Song(宋姣姣), Xiao Guo(郭晓), Yong-Song Wang(王永松), He Ma(马赫), Yin-Zou Zhao(赵尹陬), Fan-Ying Wu(邬钒颖), Shu-Yu Liu(刘姝妤), Kai-Hui Liu(刘开辉), Ya-Hua Yuan(袁亚华), Han Huang(黄寒), Jun He(何军), Wen Xu(徐文), Hai-Yun Liu(刘海云), Yu-Xia Duan(段玉霞), and Jian-Qiao Meng(孟建桥). Chin. Phys. B, 2022, 31(3): 037103.
[6] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[7] Excess-iron driven spin glass phase in Fe1+yTe1-xSex
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程). Chin. Phys. B, 2021, 30(8): 087402.
[8] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[9] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[10] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[11] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[12] Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction
Wen-Zheng Xu(徐文正), Lai-Xiang Qin(秦来香), Xing-Guo Ye(叶兴国), Fang Lin(林芳), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2020, 29(5): 057502.
[13] Effect of strain on exciton dynamics in monolayer WS2
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生). Chin. Phys. B, 2019, 28(8): 087201.
[14] Tunable 2H-TaSe2 room-temperature terahertz photodetector
Jin Wang(王瑾), Cheng Guo(郭程), Wanlong Guo(郭万龙), Lin Wang(王林), Wangzhou Shi(石旺舟), Xiaoshuang Chen(陈效双). Chin. Phys. B, 2019, 28(4): 046802.
[15] Visible-to-near-infrared photodetector based on graphene-MoTe2-graphene heterostructure
Rui-Xue Hu(户瑞雪), Xin-Li Ma(马新莉), Chun-Ha An(安春华), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(11): 117802.
No Suggested Reading articles found!