CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Antiferromagnetic–ferromagnetic transition in zigzag graphene nanoribbons induced by substitutional doping |
Shenyuan Yang(杨身园)1,2, Jing Li(李静)1, Shu-Shen Li(李树深)1,3,4 |
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 101408, China;
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China;
4 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Using first-principles calculations based on density functional theory, we show that the ground state of zigzag-edged graphene nanoribbons (ZGNRs) can be transformed from antiferromagnetic (AFM) order to ferromagnetic (FM) order by changing the substitutional sites of N or B dopants. This AFM-FM transition induced by substitutional sites is found to be a consequence of the competition between the edge and bulk states. The energy sequence of the edge and bulk states near the Fermi level is reversed in the AFM and FM configurations. When the dopant is substituted near the edge of the ribbon, the extra charge from the dopant is energetically favorable to occupy the edge states in AFM configuration. When the dopant is substituted near the center, the extra charge is energetically favorable to occupy the bulk states in FM configuration. Proper substrate with weak interaction is necessary to maintain the magnetic properties of the doped ZGNRs. Our study can serve as a guide to synthesize graphene nanostructures with stable FM order for future applications to spintronic devices.
|
Received: 02 July 2018
Revised: 04 September 2018
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474274 and 61427901) and the National Basic Research Program of China (Grant No. 2014CB643902). |
Corresponding Authors:
Shenyuan Yang
E-mail: syyang@semi.ac.cn
|
Cite this article:
Shenyuan Yang(杨身园), Jing Li(李静), Shu-Shen Li(李树深) Antiferromagnetic–ferromagnetic transition in zigzag graphene nanoribbons induced by substitutional doping 2018 Chin. Phys. B 27 117102
|
[1] |
Makarova T L 2004 Semiconductors 38 615
|
[2] |
Wang W L, Meng S and Kaxiras E 2008 Nano Lett. 8 241
|
[3] |
Zhou J, Wang Q, Sun Q and Jena P 2011 Phys. Rev. B 84 081402
|
[4] |
Son YW, Cohen M L and LouieS G 2006 Phys. Rev. Lett. 97 216803
|
[5] |
Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229
|
[6] |
Magda G Z, Jin X, Hagymási I, VancsóP, Osváth Z, Nemes-Incze P, Hwang C, BiróL P and TapasztóL 2014 Nature 514 608
|
[7] |
Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Müllen K and Fasel R 2016 Nature 531 489
|
[8] |
Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
|
[9] |
Li Y Y, Chen M X, Weinert M and Li L 2014 Nat. Commun. 5 4311
|
[10] |
Cervantes-Sodi F, Csányi G, Piscanec S and Ferrari A C 2008 Phys. Rev. B 77 165427
|
[11] |
Martins T B, da Silva A J R, Miwa R H and Fazzio A 2008 Nano Lett. 8 2293
|
[12] |
Li Y, Zhou Z, Shen P and Chen Z 2009 ACS Nano 3 1952
|
[13] |
Biel B, Blase X, Triozon F and Roche S 2009 Phys. Rev. Lett. 102 096803
|
[14] |
Zheng X H, Wang R N, Song L L, Dai Z X, Wang X L and Zeng Z 2009 Appl. Phys. Lett. 95 123109
|
[15] |
Zheng X H, Wang X L, Abtew T A and Zeng Z 2010 J. Phys. Chem. C 114 4190
|
[16] |
Huang H, Gao G, Fu H, Zheng A, Zou F, Ding G and Yao K 2017 Sci. Rep. 7 3955
|
[17] |
Kan EJ, Li Z, Yang J and Hou J G 2008 J. Am. Chem. Soc. 130 4224
|
[18] |
Zhang H, Meng S, Yang H, Li L, Fu H, Ma W, Niu C, Sun J and Gu C 2015 J. Appl. Phys. 117 113902
|
[19] |
Nam Y, Cho D and Lee J Y 2016 J. Phys. Chem. C 120 11237
|
[20] |
Wang D, Zhang Z, Zhu Z and Liang B 2014 Sci. Rep. 4 7587
|
[21] |
Castro E V, Peres N M R, Stauber T and Silva N A P 2008 Phys. Rev. Lett. 100 186803
|
[22] |
Jiang J, Turnbull J, Lu W, Boguslawski P and Bernholc J 2012 J. Chem. Phys. 136 014702
|
[23] |
Sarmah A and Hobza P 2017 RSC Adv. 7 46604
|
[24] |
Kan M, Zhou J, Sun Q, Wang Q, Kawazoe Y and Jena P 2012 Phys. Rev. B 85 155450
|
[25] |
Sawada K, Ishii F, Saito M, Okada S and Kawai T 2009 Nano Lett. 9 269
|
[26] |
Jung J and MacDonald A H 2009 Phys. Rev. B 79 235433
|
[27] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[28] |
Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
|
[29] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[30] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[31] |
Pisani L, Chan J A, Montanari B and Harrison N M 2007 Phys. Rev. B 75 064418
|
[32] |
Martins T B, Miwa R H, da Silva A J R and Fazzio A 2007 Phys. Rev. Lett. 98 196803
|
[33] |
Lieb E H 1989 Phys. Rev. Lett. 62 1201
|
[34] |
Cruz-Silva E, Barnett Z M, Sumpter B G and Meunier V 2011 Phys. Rev. B 83 155445
|
[35] |
Huang B, Liu F, Wu J, Gu BL and Duan W 2008 Phys. Rev. B 77 153411
|
[36] |
Zhang Z and Guo W 2009 Appl. Phys. Lett. 95 023107
|
[37] |
Li Y, Zhang W, Morgenstern M and Mazzarello R 2013 Phys. Rev. Lett. 110 216804
|
[38] |
Li J, Yang S and Li S S 2015 Chin. Phys. Lett. 32 027101
|
[39] |
Li J, Yang S and Li S S 2015 Chin. Phys. Lett. 32 077102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|