Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117102    DOI: 10.1088/1674-1056/27/11/117102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Antiferromagnetic–ferromagnetic transition in zigzag graphene nanoribbons induced by substitutional doping

Shenyuan Yang(杨身园)1,2, Jing Li(李静)1, Shu-Shen Li(李树深)1,3,4
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 101408, China;
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China;
4 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

Using first-principles calculations based on density functional theory, we show that the ground state of zigzag-edged graphene nanoribbons (ZGNRs) can be transformed from antiferromagnetic (AFM) order to ferromagnetic (FM) order by changing the substitutional sites of N or B dopants. This AFM-FM transition induced by substitutional sites is found to be a consequence of the competition between the edge and bulk states. The energy sequence of the edge and bulk states near the Fermi level is reversed in the AFM and FM configurations. When the dopant is substituted near the edge of the ribbon, the extra charge from the dopant is energetically favorable to occupy the edge states in AFM configuration. When the dopant is substituted near the center, the extra charge is energetically favorable to occupy the bulk states in FM configuration. Proper substrate with weak interaction is necessary to maintain the magnetic properties of the doped ZGNRs. Our study can serve as a guide to synthesize graphene nanostructures with stable FM order for future applications to spintronic devices.

Keywords:  graphene nanoribbon      substitutional doping      magnetic order      first-principles calculation  
Received:  02 July 2018      Revised:  04 September 2018      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.22.Pr (Electronic structure of graphene)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474274 and 61427901) and the National Basic Research Program of China (Grant No. 2014CB643902).

Corresponding Authors:  Shenyuan Yang     E-mail:  syyang@semi.ac.cn

Cite this article: 

Shenyuan Yang(杨身园), Jing Li(李静), Shu-Shen Li(李树深) Antiferromagnetic–ferromagnetic transition in zigzag graphene nanoribbons induced by substitutional doping 2018 Chin. Phys. B 27 117102

[1] Makarova T L 2004 Semiconductors 38 615
[2] Wang W L, Meng S and Kaxiras E 2008 Nano Lett. 8 241
[3] Zhou J, Wang Q, Sun Q and Jena P 2011 Phys. Rev. B 84 081402
[4] Son YW, Cohen M L and LouieS G 2006 Phys. Rev. Lett. 97 216803
[5] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229
[6] Magda G Z, Jin X, Hagymási I, VancsóP, Osváth Z, Nemes-Incze P, Hwang C, BiróL P and TapasztóL 2014 Nature 514 608
[7] Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Müllen K and Fasel R 2016 Nature 531 489
[8] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[9] Li Y Y, Chen M X, Weinert M and Li L 2014 Nat. Commun. 5 4311
[10] Cervantes-Sodi F, Csányi G, Piscanec S and Ferrari A C 2008 Phys. Rev. B 77 165427
[11] Martins T B, da Silva A J R, Miwa R H and Fazzio A 2008 Nano Lett. 8 2293
[12] Li Y, Zhou Z, Shen P and Chen Z 2009 ACS Nano 3 1952
[13] Biel B, Blase X, Triozon F and Roche S 2009 Phys. Rev. Lett. 102 096803
[14] Zheng X H, Wang R N, Song L L, Dai Z X, Wang X L and Zeng Z 2009 Appl. Phys. Lett. 95 123109
[15] Zheng X H, Wang X L, Abtew T A and Zeng Z 2010 J. Phys. Chem. C 114 4190
[16] Huang H, Gao G, Fu H, Zheng A, Zou F, Ding G and Yao K 2017 Sci. Rep. 7 3955
[17] Kan EJ, Li Z, Yang J and Hou J G 2008 J. Am. Chem. Soc. 130 4224
[18] Zhang H, Meng S, Yang H, Li L, Fu H, Ma W, Niu C, Sun J and Gu C 2015 J. Appl. Phys. 117 113902
[19] Nam Y, Cho D and Lee J Y 2016 J. Phys. Chem. C 120 11237
[20] Wang D, Zhang Z, Zhu Z and Liang B 2014 Sci. Rep. 4 7587
[21] Castro E V, Peres N M R, Stauber T and Silva N A P 2008 Phys. Rev. Lett. 100 186803
[22] Jiang J, Turnbull J, Lu W, Boguslawski P and Bernholc J 2012 J. Chem. Phys. 136 014702
[23] Sarmah A and Hobza P 2017 RSC Adv. 7 46604
[24] Kan M, Zhou J, Sun Q, Wang Q, Kawazoe Y and Jena P 2012 Phys. Rev. B 85 155450
[25] Sawada K, Ishii F, Saito M, Okada S and Kawai T 2009 Nano Lett. 9 269
[26] Jung J and MacDonald A H 2009 Phys. Rev. B 79 235433
[27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[28] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[29] Blöchl P E 1994 Phys. Rev. B 50 17953
[30] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[31] Pisani L, Chan J A, Montanari B and Harrison N M 2007 Phys. Rev. B 75 064418
[32] Martins T B, Miwa R H, da Silva A J R and Fazzio A 2007 Phys. Rev. Lett. 98 196803
[33] Lieb E H 1989 Phys. Rev. Lett. 62 1201
[34] Cruz-Silva E, Barnett Z M, Sumpter B G and Meunier V 2011 Phys. Rev. B 83 155445
[35] Huang B, Liu F, Wu J, Gu BL and Duan W 2008 Phys. Rev. B 77 153411
[36] Zhang Z and Guo W 2009 Appl. Phys. Lett. 95 023107
[37] Li Y, Zhang W, Morgenstern M and Mazzarello R 2013 Phys. Rev. Lett. 110 216804
[38] Li J, Yang S and Li S S 2015 Chin. Phys. Lett. 32 027101
[39] Li J, Yang S and Li S S 2015 Chin. Phys. Lett. 32 077102
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
No Suggested Reading articles found!