Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114102    DOI: 10.1088/1674-1056/27/11/114102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Modified physical optics algorithm for near field scattering

Bin Chen(陈彬), Chuangming Tong(童创明)
Air Force Engineering University, Xi'an 710051, China
Abstract  

A novel modified physical optics algorithm is proposed to overcome the difficulties of near field scattering prediction for classical physical optics. The method is applied to calculating the near field radar cross section of electrically large objects by taking into account the influence of the distinct wave propagation vector, the near field Green function, and the antenna radiation pattern. By setting up local reference coordinates, each partitioned facet has its own distinct wave front curvature. The radiation gain for every surface element is taken into consideration based on the modulation of the antenna radiation pattern. The Green function is refined both in amplitude and phase terms and allows for near field calculation. The scattered characteristics of the near field targets are studied by numerical simulations. The results show that the approach can achieve a satisfactory accuracy.

Keywords:  physical optics      scattering      near field  
Received:  21 May 2018      Revised:  10 July 2018      Accepted manuscript online: 
PACS:  41.20.-q (Applied classical electromagnetism)  
Corresponding Authors:  Bin Chen     E-mail:  chen_cem@126.com

Cite this article: 

Bin Chen(陈彬), Chuangming Tong(童创明) Modified physical optics algorithm for near field scattering 2018 Chin. Phys. B 27 114102

[1] Jeng S 1998 IEEE Trans. Antennas Propagat. 46 551
[2] Neto A 2003 IEEE Antennas and Propagation Society International Symposium 4 416
[3] Chen M, Zhang Y and Liang C H 2005 J. Elecromagn. Waves Appl. 19 1511
[4] Legault S R 2004 Electron. Lett. 40 71
[5] Papkelis E G, Anastassiu H T and Frangos P V 2008 IEEE Trans. Antennas Propagat. 56 3359
[6] Sui M and Xu X J 2010 IEEE Trans. Antennas Propagat. 58 2981
[7] Sui M and Xu X J 2010 2010 IEEE URSI/APS Symposium, Toronto
[8] Corucci L, Giusti E, Martorella M and Berizzi F 2012 IEEE Trans. Antennas Propagat. 60 6052
[9] Gendelman A, Brick Y and Boag A 2014 IEEE Trans. Antennas Propagat. 62 4325
[10] Roudstein M, Brick Y and Boag A 2015 IEEE Trans. Antennas Propagat. 63 5015
[11] Cui Y, Chen W, Zhang X and Zheng J 2014 2014 IEEE International Conference on Computer and Information Technology 899
[12] Cheng Z, Xie Y and Fan J 2014 J. Electron. & Inf. Technol. 36 1999
[13] Cheng Z, Xie Y, Ma X, Mao Y and Bi B 2015 J. Electron. & Inf. Technol. 37 1002
[14] Guo L X, Wang R and Wu Z S 2010 Chin. Phys. B 19 044102
[15] Wang R, Guo L X and Ma J 2009 Chin. Phys. B 18 3422
[16] Kouyoumjian R G and Peters L 1965 Proc. IEEE 53 920
[17] Côté F 2007 Simulation de section efficace radar sur une trajectoire (M.S. thesis) (Quebec City:Laval University)
[18] Legault S R and Louie A 2004 Validation and implementation of a near-field physical optics formulation (Technical Memorandum) DRDC Ottawa TM 2004-131, Aug. 2004
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[6] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[10] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[11] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[12] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[13] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[14] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[15] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
No Suggested Reading articles found!