Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 107201    DOI: 10.1088/1674-1056/27/10/107201
Special Issue: TOPICAL REVIEW — Spin manipulation in solids
TOPICAL REVIEW—Spin manipulation in solids Prev   Next  

Spin switching in antiferromagnets using Néel-order spin-orbit torques

P Wadley, K W Edmonds
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
Abstract  

Antiferromagnets offer considerable potential for electronic device applications. This article reviews recent demonstrations of spin manipulation in antiferromagnetic devices using applied electrical currents. Due to spin-orbit coupling in environments with particular crystalline or structural symmetries, the electric current can induce an effective magnetic field with a sign that alternates on the lengthscale of the unit cell. The staggered effective field provides an efficient mechanism for switching antiferromagnetic domains and moving antiferromagnetic domain walls, with writing speeds in the terahertz regime.

Keywords:  spintronics      antiferromagnetic      current-induced torques      magnetic domains  
Received:  07 July 2018      Revised:  06 August 2018      Accepted manuscript online: 
PACS:  72.15.Gd (Galvanomagnetic and other magnetotransport effects)  
  75.50.Ee (Antiferromagnetics)  
  75.60.Ch (Domain walls and domain structure)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: 

Project supported by EPSRC (Grant No. EP/P019749/1). P Wadley acknowledges support from the Royal Society through a University Research Fellowship.

Corresponding Authors:  K W Edmonds     E-mail:  Kevin.Edmonds@nottingham.ac.uk

Cite this article: 

P Wadley, K W Edmonds Spin switching in antiferromagnets using Néel-order spin-orbit torques 2018 Chin. Phys. B 27 107201

[1] Hellman F, Hoffman A, Tserkovnyak Y et al 2017 Rev. Mod. Phys. 89 025006
[2] Park B G, Wunderlich J, Marti X, Holy V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B and Jungwirth T 2011 Nat. Mater. 10 347
[3] Wadley P, Howells B, Zelezny J et al 2016 Science 351 587
[4] Grzybowski M J, Wadley P, Edmonds K W, Beardsley R, Hills V, Campion R P, Gallagher B L, Chauhan J S, Novak V, Jungwirth T, Maccherozzi F and Dhesi S S 2017 Phys. Rev. Lett. 118 057701
[5] Olejník K, Schuler V, Marti X, Novák V, Kašpar Z, Wadley P, Campion R P, Edmonds K W, Gallagher B L, Garces J, Baumgartner M, Gambardella P and Jungwirth T 2017 Nat. Commun. 8 15434
[6] Olejnik K, Seifert T, Kašpar Z, Novák V, Wadley P, Campion R P, Baumgartner M, Gambardella P, Němec P, Wunderlich J, Sinova J, Kužel P, Müller M, Kampfrath T and Jungwirth T 2018 Sci. Adv. 4 eaar3566
[7] Wadley P, Reimers S, Grzybowski M J, Andrews C, Wang M, Chauhan J S, Gallagher B L, Campion R P, Edmonds K W, Dhesi S S, Maccherozzi F, Novak V, Wunderlich J and Jungwirth T 2018 Nat. Nanotechnol. 13 362
[8] Godinho J, Reichlova H, Kriegner D, Novak V, Olejnik K, Kaspar Z, Soban Z, Wadley P, Campion R P, Otxoa R M, Roy P E, Zelezny J, Jungwirth T and Wunderlich J 2018 arXiv:180602795[cond-mat]
[9] Bodnar Yu S, Šmejkal L, Turek I, Jungwirth T, Gomonay O, Sinova J, Sapozhnik A A, Elmers H J, Kläui M and Jourdan M 2018 Nat. Commun. 9 348
[10] Meinert M, Graulich D and Matalla-Wagner T 2018 Phys. Rev. Appl. 9 064040
[11] Zhou X F, Zhang J, Li F, Chen X Z, Shi G Y, Tan Y Z, Gu Y D, Saleem M S, Wu H Q, Pan F and Song C 2018 Phys. Rev. Appl. 9 054028
[12] Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F and Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204
[13] Kittel C 1951 Phys. Rev. 82 565
[14] Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V and Rasing Th 2004 Nature 429 850
[15] Editorial 2018 Nat. Phys. 14 199 and references therein
[16] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231
[17] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[18] Chernyshov A, Overby M, Liu X, Furdyna J K, Lyanda-Geller Y and Rokhinson L P 2009 Nat. Phys. 5 656
[19] Ciccarelli C, Anderson L, Tshitoyan V, Ferguson A J, Gerhard F, Gould C, Molenkamp L W, Gayles J, Železný J, Šmejkal L, Yuan Z, Sinova J, Freimuth F and Jungwirth T 2016 Nat. Phys. 12 855
[20] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[21] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotechnol. 8 587
[22] Liu L, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601
[23] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[24] Fukami S, Anekawa T, Zhang C and Ohno H 2016 Nat. Nanotechnol. 11 621
[25] Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T and Jiang Y 2014 Nat. Nanotechnol. 9 548
[26] Oh Y W, Baek S C, Kim Y, Lee H Y, Lee K D, Yang C D, Park E S, Lee K S, Kim K W, Go G, Jeong J R, Min B C, Lee H W, Lee K J and Park B G 2016 Nat. Nanotechnol. 11 878
[27] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H and Wang K Y 2017 Nat. Mater. 16 712
[28] Baek S C, Amin V P, O Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G and Lee K J 2018 Nat. Mater. 17 509
[29] Gomonay H V and Loktev V M 2010 Phys. Rev. B 81 144427
[30] Zhang X, Liu Q, Luo J W, Freeman A J and Zunger A 2014 Nat. Phys. 10 387
[31] Zelezny J, Gao H, Vyborny K, Zemen J, Masek J, Manchon A, Wunderlich J, Sinova J and Jungwirth T 2014 Phys. Rev. Lett. 113 157201
[32] Zelezny J, Gao H, Manchon A, Freimuth F, Mokrousov Y, Zemen J, Masek J, Sinova J and Jungwirth T 2017 Phys. Rev. B 95 014403
[33] Roy P E, Otxoa R M and Wunderlich J 2016 Phys. Rev. B 94 014439
[34] Shiino T, Oh S H, Haney P M, Lee S W, Go G, Park B G and Lee K J 2016 Phys. Rev. Lett. 117 087203
[35] Gomonay O, Jungwirth T and Sinova J 2016 Phys. Rev. Lett. 117 017202
[36] Schryer N L and Walker L R 1974 J. Appl. Phys. 45 5406
[37] Wadley P, Hills V, Shahedkhah M R, Edmonds K W, Campion R P, Novak V, Ouladdiaf B, Khalyavin D, Langridge S, Saidl V, Nemec P, Rushforth A W, Gallagher B L, Dhesi S S, Maccherozzi F, Zelezny J and Jungwirth T 2015 Sci. Rep. 5 17079
[38] Mundelein J and Schuster H U 1992 Zeit. Naturforsch. B 47 925
[39] Máca F, Mašek J, Stelmakhovych O, Martí X, Reichlová H, Uhlířová K, Beran P, Wadley P, Novák V and Jungwirth T 2012 J. Magn. Magn. Mater. 324 1606
[40] Wadley P, Novak V, Campion R P et al 2013 Nat. Commun. 4 2322
[41] Saidl V, Nemec P, Wadley P, Hills V, Campion R P, Novak V, Edmonds K W, Maccherozzi F, Dhesi S S, Gallagher B L, Trojanek F, Kunes J, Zelezny J, Maly P and Jungwirth T 2017 Nat. Photon. 11 91
[42] Wastlbauer G, Bl and J A C 2005 Adv. Phys. 54 137
[43] Šmejkal L, Železný J, Sinova J and Jungwirth T 2017 Phys. Rev. Lett. 118 106402
[44] Tang P, Zhou Q, Xu G and Zhang S C 2016 Nat. Phys. 12 1100
[45] Baumgartner M, Garello K, Mendil J, Avci C O, Grimaldi E, Murer C, Feng J, Gabureac M, Stamm C, Acremann Y, Finizio S, Wintz S, Raabe J and Gambardella P 2017 Nat. Nanotechnol. 12 980
[46] Barthem V M T S, Colin C V, Mayaffre H, Julien M H and Givord D 2013 Nat. Commun. 4 2892
[47] Sapozhnik A A, Filianina M, Yu S, Lamir, A, Mawass M A, Skourski Y, Elmers H J, Zabel H, Kläui M and Jourdan M 2018 Phys. Rev. B 97 134429
[48] Bhattacharjee N, Sapozhnik A A, Yu S, Yu V, Agustsson S Y, Cao J, Dominko D, Obergfell M, Gomonay O, Sinova J, Kläui M, Elmers H J, Jourdan M and Demsar J 2018 Phys. Rev. Lett. 120 237201
[49] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[1] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[2] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[3] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[4] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[7] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[8] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[9] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[10] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[11] Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(4): 047105.
[12] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
[13] Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure
Na Li(李娜), Jin Tang(汤进), Lei Su(苏磊), Ya-Jiao Ke(柯亚娇), Wei Zhang(张伟), Zong-Kai Xie(谢宗凯), Rui Sun(孙瑞), Xiang-Qun Zhang(张向群), Wei He(何为), and Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2021, 30(11): 117502.
[14] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[15] Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory
Malak Azmat Ali, G Murtaza, A Laref. Chin. Phys. B, 2020, 29(6): 066102.
No Suggested Reading articles found!