CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications |
Yang Song(宋洋), Yan-Fang Zhang(张艳芳)†, Jinbo Pan(潘金波), and Shixuan Du(杜世萱) |
1 Institute of Physics and School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Monolayer CrN has been predicted to be half-metallic ferromagnet with high Curie temperature. Due to bulk CrN's biocompatibility, the monolayer is a promising candidate for bio-related devices. Here, using first-principles calculations based on density functional theory, we find that the formation energy of the bulk CrN stacking from layers with square lattice is only 68 meV/atom above the convex hull, suggesting a great potential to fabricate the monolayer CrN in a square lattice by using molecular beam epitaxy method. The monolayer CrN is then proved to be a soft material with an ultra-low Young's modulus and can sustain very large strains. Moreover, the analysis of the projected density of states demonstrates that the ferromagnetic half-metallicity originates from the splitting of Cr-d orbitals in the CrN square crystal field, the bonding interaction between Cr-N, and that between Cr-Cr atoms. It is worth noting that the super-exchange interaction is much larger than the direct-exchange interaction and contributes to the ultra-high Curie temperature, which is obtained from Monte Carlo simulations based on Heisenberg model. Our findings suggest that the monolayer CrN can be an indispensable candidate for nanoscale flexible spintronic applications with good biocompatibility and is considerable appealing to be realized in experiment.
|
Received: 10 October 2020
Revised: 11 December 2020
Accepted manuscript online: 13 January 2021
|
PACS:
|
71.20.Gj
|
(Other metals and alloys)
|
|
62.20.de
|
(Elastic moduli)
|
|
81.40.Jj
|
(Elasticity and anelasticity, stress-strain relations)
|
|
75.50.Dd
|
(Nonmetallic ferromagnetic materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61888102), the National Key Research and Development Program of China (Grant No. 2016YFA0202300), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000). |
Corresponding Authors:
†Corresponding author. E-mail: zhangyanfang@ucas.ac.cn
|
Cite this article:
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱) Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications 2021 Chin. Phys. B 30 047105
|
1 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 2 Elias C, Valvin P, Pelini T, Summerfield A, Mellor C J, Cheng T S, Eaves L, Foxon C T, Beton P H, Novikov S V, Gil B and Cassabois G 2019 Nat. Commun. 10 2639 3 Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147 4 Chhowalla M, Jena D and Zhang H 2016 Nat. Rev. Mater. 1 16025 5 Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 6 Zhang Y F, Pan J B, Banjade H, Yu J, Lin H, Bansil A, Du S X and Yan Q M 2020 Nano Res. 14 584 7 Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A and Hennig R G 2017 Nano Lett. 17 5251 8 Wu Q, Zhang Y, Zhou Q, Wang J and Zeng X C 2018 J. Phys. Chem. Lett. 9 4260 9 Briggs N, Bersch B, Wang Y, Jiang J, Koch R J, Nayir N, Wang K, Kolmer M, Ko W, De La Fuente Duran A, Subramanian S, Dong C, Shallenberger J, Fu M, Zou Q, Chuang Y W, Gai Z, Li A P, Bostwick A, Jozwiak C, Chang C Z, Rotenberg E, Zhu J, van Duin A C T, Crespi V and Robinson J A 2020 Nat. Mater. 19 637 10 Ji Q Q, Li C, Wang J L, Niu J J, Gong Y, Zhang Z P, Fang Q Y, Zhang Y, Shi J P, Liao L, Wu X S, Gu L, Liu Z F and Zhang Y F 2017 Nano Lett. 17 4908 11 Bekaert J, Petrov M, Aperis A, Oppeneer P M and Milosevic M V 2019 Phys. Rev. Lett. 123 077001 12 Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H and Zhang Y 2019 Nature 575 156 13 Cazorla C and ì\ niguez J 2018 Phys. Rev. B 98 174105 14 Jiang S W, Li L Z, Wang Z F, Mak K F and Shan J 2018 Nat. Nanotech. 13 549 15 Sun Y F, Pan J B, Zhang Z T, Zhang K N, Liang J, Wang W J, Yuan Z Q, Hao Y K, Wang B L, Wang J W, Wu Y, Zheng J Y, Jiao L Y, Zhou S Y, Liu K H, Cheng C, Duan W H, Xu Y, Yan Q M and Liu K 2019 Nano Lett. 19 761 16 Liu K and Wu J Q 2016 J. Mater. Res. 31 832 17 Duerloo K A N, Li Y and Reed E J 2014 Nat. Commun. 5 4214 18 Wu W Z, Wang L, Yu R M, Liu Y Y, Wei S H, Hone J and Wang Z L 2016 Adv. Mater. 28 8463 19 Lin P, Zhu L P, Li D, Xu L, Pan C F and Wang Z L 2018 Adv. Funct. Mater. 28 1802849 20 Akinwande D, Petrone N and Hone J 2014 Nat. Commun. 5 5678 21 Liu Y, Pharr M and Salvatore G A 2017 ACS Nano 11 9614 22 Huang S Y, Liu Y, Zhao Y, Ren Z F and Guo C F 2019 Adv. Funct. Mater. 29 1805924 23 Jiang J, Bitla Y, Huang C W, Do T H, Liu H J, Hsieh Y H, Ma C H, Jang C Y, Lai Y H, Chiu P W, Wu W W, Chen Y C, Zhou Y C and Chu Y H 2017 Sci. Adv. 3 e1700121 24 de Groot R A, Mueller F M, Engen P G v and Buschow K H J 1983 Phys. Rev. Lett. 50 2024 25 Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Nature 392 794 26 Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnàr S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 27 Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211 28 Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G and Gupta A 2001 Phys. Rev. Lett. 86 5585 29 Xie W, Liu B and Pettifor D G 2003 Phys. Rev. B 68 134407 30 Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677 31 Liu Y P, Fuh H R and Wang Y K 2012 J. Phys. Chem. C 116 18032 32 Winterlik J, Fecher G, Naghavi S S and Felser C 2011 Phys. Rev. B 83 184428 33 Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 34 Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 35 Du A, Sanvito S, Sanvito S and Smith S C 2012 Phys. Rev. Lett. 108 197207 36 Li X, Wu X and Yang J 2014 J. Amer. Chem. Soc. 136 11065 37 Zhang S, Li Y, Zhao T and Wang Q 2014 Sci. Rep. 4 5241 38 Kuklin A V, Kuzubov A A, Kovaleva E A, Mikhaleva N S, Tomilin F N, Lee H and Avramov P V 2017 Nanoscale 9 621 39 Modarresi M, Mogulkoc A, Mogulkoc Y and Rudenko A N 2019 Phys. Rev. Appl. 11 064015 40 Cao T, Li Z and Louie S G 2015 Phys. Rev. Lett. 114 236602 41 Zhang X, Wang B, Guo Y, Zhang Y, Chen Y and Wang J 2019 Nanoscale Horiz. 4 859 42 Meng R, Houssa M, Iordanidou K, Pourtois G, Afanasiev V and Stesmans A 2020 Phys. Rev. Mater. 4 074001 43 Chen Z, Fan X, Shen Z, Luo Z, Yang D and Ma S 2020 J. Mater. Sci. 55 5696 44 de Vries E K, Kamerbeek A M, Koirala N, Brahlek M, Salehi M, Oh S, van Wees B J and Banerjee T 2015 Phys. Rev. B 92 201102 45 Liu J Y, Sun Q, Kawazoe Y and Jena P 2016 Phys. Chem. Chem. Phys. 18 8777 46 Gong C and Zhang X 2019 Science 363 eaav4450 47 Torelli D, Thygesen K S and Olsen T 2019 2D Mater. 6 045018 48 Wang B, Zhang Y, Ma L, Wu Q, Guo Y, Zhang X and Wang J 2019 Nanoscale 11 4204 49 Wang B, Zhang X, Zhang Y, Yuan S, Guo Y, Dong S and Wang J 2020 Mater. Horiz. 7 1623 50 Blöchl P E 1994 Phys. Rev. B 50 17953 51 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 52 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 53 Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 54 Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 55 Wang L, Maxisch T and Ceder G 2006 Phys. Rev. B 73 195107 56 Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002 57 O'Hara D J, Zhu T C, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125 58 Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T and Thygesen K S 2018 2D Mater. 5 042002 59 Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T and Thygesen K S 2019 2D Mater. 6 048002 60 Xiang H, Lee C, Koo H J, Gong X and Whangbo M H 2013 Dalton Trans. 42 823 61 Cazorla C and ì\ niguez J 2013 Phys. Rev. B 88 214430 62 Cazorla C, Dieguez O and Iniguez J2017 Sci. Adv. 3 e1700288 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|