Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047105    DOI: 10.1088/1674-1056/abdb20

Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications

Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱)
1 Institute of Physics and School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Monolayer CrN has been predicted to be half-metallic ferromagnet with high Curie temperature. Due to bulk CrN's biocompatibility, the monolayer is a promising candidate for bio-related devices. Here, using first-principles calculations based on density functional theory, we find that the formation energy of the bulk CrN stacking from layers with square lattice is only 68 meV/atom above the convex hull, suggesting a great potential to fabricate the monolayer CrN in a square lattice by using molecular beam epitaxy method. The monolayer CrN is then proved to be a soft material with an ultra-low Young's modulus and can sustain very large strains. Moreover, the analysis of the projected density of states demonstrates that the ferromagnetic half-metallicity originates from the splitting of Cr-d orbitals in the CrN square crystal field, the bonding interaction between Cr-N, and that between Cr-Cr atoms. It is worth noting that the super-exchange interaction is much larger than the direct-exchange interaction and contributes to the ultra-high Curie temperature, which is obtained from Monte Carlo simulations based on Heisenberg model. Our findings suggest that the monolayer CrN can be an indispensable candidate for nanoscale flexible spintronic applications with good biocompatibility and is considerable appealing to be realized in experiment.
Keywords:  monolayer CrN      half-metallic ferromagnet      flexible material      spintronics  
Received:  10 October 2020      Revised:  11 December 2020      Accepted manuscript online:  13 January 2021
PACS:  71.20.Gj (Other metals and alloys) (Elastic moduli)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
  75.50.Dd (Nonmetallic ferromagnetic materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61888102), the National Key Research and Development Program of China (Grant No. 2016YFA0202300), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱) Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications 2021 Chin. Phys. B 30 047105

1 Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
2 Elias C, Valvin P, Pelini T, Summerfield A, Mellor C J, Cheng T S, Eaves L, Foxon C T, Beton P H, Novikov S V, Gil B and Cassabois G 2019 Nat. Commun. 10 2639
3 Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
4 Chhowalla M, Jena D and Zhang H 2016 Nat. Rev. Mater. 1 16025
5 Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
6 Zhang Y F, Pan J B, Banjade H, Yu J, Lin H, Bansil A, Du S X and Yan Q M 2020 Nano Res. 14 584
7 Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A and Hennig R G 2017 Nano Lett. 17 5251
8 Wu Q, Zhang Y, Zhou Q, Wang J and Zeng X C 2018 J. Phys. Chem. Lett. 9 4260
9 Briggs N, Bersch B, Wang Y, Jiang J, Koch R J, Nayir N, Wang K, Kolmer M, Ko W, De La Fuente Duran A, Subramanian S, Dong C, Shallenberger J, Fu M, Zou Q, Chuang Y W, Gai Z, Li A P, Bostwick A, Jozwiak C, Chang C Z, Rotenberg E, Zhu J, van Duin A C T, Crespi V and Robinson J A 2020 Nat. Mater. 19 637
10 Ji Q Q, Li C, Wang J L, Niu J J, Gong Y, Zhang Z P, Fang Q Y, Zhang Y, Shi J P, Liao L, Wu X S, Gu L, Liu Z F and Zhang Y F 2017 Nano Lett. 17 4908
11 Bekaert J, Petrov M, Aperis A, Oppeneer P M and Milosevic M V 2019 Phys. Rev. Lett. 123 077001
12 Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H and Zhang Y 2019 Nature 575 156
13 Cazorla C and ì\ niguez J 2018 Phys. Rev. B 98 174105
14 Jiang S W, Li L Z, Wang Z F, Mak K F and Shan J 2018 Nat. Nanotech. 13 549
15 Sun Y F, Pan J B, Zhang Z T, Zhang K N, Liang J, Wang W J, Yuan Z Q, Hao Y K, Wang B L, Wang J W, Wu Y, Zheng J Y, Jiao L Y, Zhou S Y, Liu K H, Cheng C, Duan W H, Xu Y, Yan Q M and Liu K 2019 Nano Lett. 19 761
16 Liu K and Wu J Q 2016 J. Mater. Res. 31 832
17 Duerloo K A N, Li Y and Reed E J 2014 Nat. Commun. 5 4214
18 Wu W Z, Wang L, Yu R M, Liu Y Y, Wei S H, Hone J and Wang Z L 2016 Adv. Mater. 28 8463
19 Lin P, Zhu L P, Li D, Xu L, Pan C F and Wang Z L 2018 Adv. Funct. Mater. 28 1802849
20 Akinwande D, Petrone N and Hone J 2014 Nat. Commun. 5 5678
21 Liu Y, Pharr M and Salvatore G A 2017 ACS Nano 11 9614
22 Huang S Y, Liu Y, Zhao Y, Ren Z F and Guo C F 2019 Adv. Funct. Mater. 29 1805924
23 Jiang J, Bitla Y, Huang C W, Do T H, Liu H J, Hsieh Y H, Ma C H, Jang C Y, Lai Y H, Chiu P W, Wu W W, Chen Y C, Zhou Y C and Chu Y H 2017 Sci. Adv. 3 e1700121
24 de Groot R A, Mueller F M, Engen P G v and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
25 Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Nature 392 794
26 Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnàr S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
27 Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211
28 Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G and Gupta A 2001 Phys. Rev. Lett. 86 5585
29 Xie W, Liu B and Pettifor D G 2003 Phys. Rev. B 68 134407
30 Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
31 Liu Y P, Fuh H R and Wang Y K 2012 J. Phys. Chem. C 116 18032
32 Winterlik J, Fecher G, Naghavi S S and Felser C 2011 Phys. Rev. B 83 184428
33 Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
34 Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
35 Du A, Sanvito S, Sanvito S and Smith S C 2012 Phys. Rev. Lett. 108 197207
36 Li X, Wu X and Yang J 2014 J. Amer. Chem. Soc. 136 11065
37 Zhang S, Li Y, Zhao T and Wang Q 2014 Sci. Rep. 4 5241
38 Kuklin A V, Kuzubov A A, Kovaleva E A, Mikhaleva N S, Tomilin F N, Lee H and Avramov P V 2017 Nanoscale 9 621
39 Modarresi M, Mogulkoc A, Mogulkoc Y and Rudenko A N 2019 Phys. Rev. Appl. 11 064015
40 Cao T, Li Z and Louie S G 2015 Phys. Rev. Lett. 114 236602
41 Zhang X, Wang B, Guo Y, Zhang Y, Chen Y and Wang J 2019 Nanoscale Horiz. 4 859
42 Meng R, Houssa M, Iordanidou K, Pourtois G, Afanasiev V and Stesmans A 2020 Phys. Rev. Mater. 4 074001
43 Chen Z, Fan X, Shen Z, Luo Z, Yang D and Ma S 2020 J. Mater. Sci. 55 5696
44 de Vries E K, Kamerbeek A M, Koirala N, Brahlek M, Salehi M, Oh S, van Wees B J and Banerjee T 2015 Phys. Rev. B 92 201102
45 Liu J Y, Sun Q, Kawazoe Y and Jena P 2016 Phys. Chem. Chem. Phys. 18 8777
46 Gong C and Zhang X 2019 Science 363 eaav4450
47 Torelli D, Thygesen K S and Olsen T 2019 2D Mater. 6 045018
48 Wang B, Zhang Y, Ma L, Wu Q, Guo Y, Zhang X and Wang J 2019 Nanoscale 11 4204
49 Wang B, Zhang X, Zhang Y, Yuan S, Guo Y, Dong S and Wang J 2020 Mater. Horiz. 7 1623
50 Blöchl P E 1994 Phys. Rev. B 50 17953
51 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
52 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
53 Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
54 Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
55 Wang L, Maxisch T and Ceder G 2006 Phys. Rev. B 73 195107
56 Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002
57 O'Hara D J, Zhu T C, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125
58 Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T and Thygesen K S 2018 2D Mater. 5 042002
59 Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T and Thygesen K S 2019 2D Mater. 6 048002
60 Xiang H, Lee C, Koo H J, Gong X and Whangbo M H 2013 Dalton Trans. 42 823
61 Cazorla C and ì\ niguez J 2013 Phys. Rev. B 88 214430
62 Cazorla C, Dieguez O and Iniguez J2017 Sci. Adv. 3 e1700288
[1] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[2] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[3] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[4] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[5] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[6] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[7] Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory
Malak Azmat Ali, G Murtaza, A Laref. Chin. Phys. B, 2020, 29(6): 066102.
[8] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
[9] Spin transport in antiferromagnetic insulators
Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之). Chin. Phys. B, 2019, 28(8): 088504.
[10] Electrically tunable spin diode effect in a tunneling junction of quantum dot
Xukai Peng(彭许凯), Zhengzhong Zhang(张正中). Chin. Phys. B, 2019, 28(12): 127202.
[11] Electrical spin polarization through spin-momentum locking in topological-insulator nanostructures
Minhao Zhang(张敏昊), Xuefeng Wang(王学锋), Fengqi Song(宋凤麒), Rong Zhang(张荣). Chin. Phys. B, 2018, 27(9): 097307.
[12] Liquid phase epitaxy magnetic garnet films and their applications
Yi-Heng Rao(饶毅恒), Huai-Wu Zhang(张怀武), Qing-Hui Yang(杨青慧), Dai-Nan Zhang(张岱南), Li-Chuan Jin(金立川), Bo Ma(马博), Yu-Juan Wu(吴玉娟). Chin. Phys. B, 2018, 27(8): 086701.
[13] Recent spinterfacial studies targeted to spin manipulation in molecular spintronic devices
Xian-Rong Gu(谷现荣), Li-Dan Guo(郭立丹), Xiang-Nan Sun(孙向南). Chin. Phys. B, 2018, 27(10): 107202.
[14] Spin switching in antiferromagnets using Néel-order spin-orbit torques
P Wadley, K W Edmonds. Chin. Phys. B, 2018, 27(10): 107201.
[15] Spin-dependent balance equations in spintronics
Zheng-Chuan Wang(王正川). Chin. Phys. B, 2018, 27(1): 016701.
No Suggested Reading articles found!