Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017102    DOI: 10.1088/1674-1056/27/1/017102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, electronic, and mechanical properties of cubic TiO2: A first-principles study

Debashish Dash1, Chandan K Pandey1, Saurabh Chaudhury1, Susanta K Tripathy2
1 Department of Electrical Engineering, National Institute of Technology, Silchar, Assam 788010, India;
2 Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, Assam 788010, India
Abstract  We present an analysis of structural, electronic, and mechanical properties of cubic titanium dioxide (TiO2) using an all electron orthogonalzed linear combinations of atomic orbitals (OLCAO) basis set under the framework of density functional theory (DFT). The structural property, especially the lattice constant a, and the electronic properties such as the band diagram and density of states (DOS) are studied and analyzed. The mechanical properties such as bulk moduli, shear moduli, Young's Moduli, and Poison's ratio are also investigated thoroughly. The calculations are carried out on shear moduli and anisotropy factor for cubic TiO2. The Vickers hardness is also tested for fluorite and pyrite cubic-structured TiO2. Furthermore, the results are compared with the previous theoretical and experimental results. It is found that DFT-based simulation produces results which are approximation to experimental results, whereas the calculated elastic constants are better than the previous theoretical and experimental values.
Keywords:  density functional theory      cubic TiO2      structural      electronic      and mechanical properties  
Received:  01 August 2017      Revised:  29 September 2017      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
Corresponding Authors:  Debashish Dash     E-mail:  debashishdashnits@gmail.com

Cite this article: 

Debashish Dash, Chandan K Pandey, Saurabh Chaudhury, Susanta K Tripathy Structural, electronic, and mechanical properties of cubic TiO2: A first-principles study 2018 Chin. Phys. B 27 017102

[1] J Z Zhao, G T Wang and Y C Liang 2008 Chin. Phys. Lett. 25 4356
[2] Landmann M, Rauls E and Schmidt W G 2012 J. Phys.: Condens. Matter 24 1
[3] Fan L B, Zhang P, Has S, Wang Y X, Liu P D, Wang W and Yao Y G 2007 Physics 36
[4] Xie H, Hou W and Bai W 2005 Physics 34
[5] Wang J H, Li Z P, Liu B and Liu B B 2017 Chin. Phys. B 26 026101
[6] Wang X, Shi Z and Jiang J 2009 Physics 38
[7] Wan L, Cao L, Zhang W H, Han Y Y, Chen T X, Liu L Y, Guo P P, Feng J Y and Xu F Q 2012 Acta Phys. Sin. 61 186801 (in Chinese)
[8] Miloua R, Kebbab Z, Benramdane N, Khadraoui M and Chiker F 2011 Computational Material Science 50 2142
[9] Jun L Q, Zhang N C, Liu F S and Liu Z T 2014 Phys. Scr. 89 1
[10] Zhou X F, Dong X, Qian G R, Zhang L, Tian Y and Wang H T 2010 Phys. Rev. B 82 1
[11] Zhang J, Zhou P, Liu J and Yu J 2014 Phys. Chem. Chem. Phys. 16 20382
[12] Mahmood T, Cao C, Tahir M, Idrees F, Ahmed M, Tanveer M, Aslam I, Usman Z, Ali Z and Hussain S 2013 Physica B 420 74
[13] Liang Y, Zhang B and Zhao J 2008 Phys. Rev. B 77 1
[14] Kong X G, Yu Y and Gao T 2010 Eur. Phys. J. B. 76 365
[15] Swamy V and Muddle B C 2007 Phys. Rev. Lett. 98 035502
[16] Mattesini M, Almeida J S de, Dubrovinsky L, Dubrovinskaia N, Johansson B and Ahuja R 2004 Phys. Rev. B 70 115101
[17] Mattesini M, Almeida J S de, Dubrovinsky L, Dubrovinskaia N, Johansson B and Ahuja R 2004 Phys. Rev. B 70 212101
[18] Kim D Y, Almeida J S de, Koci L and Ahuja R 2007 Appl. Phys. Lett. 90 171903
[19] Wang Y Y, Ding J H, Liu W B, Huang S S, Ke X Q, Wang Y Z, Zhang C and Zhao J J 2017 Chin. Phys. B 26 026102
[20] Hu X L, Zhao R X, Luo Y and Song Q G 2017 Chin. Phys. B 26 023101
[21] Muscat J, Swamy V and Harrison N M 2002 Phys. Rev. B 65 224112
[22] Broyden C G 1970 J. Inst. Maths Applics 6 76
[23] Fletcher R 1970 Computer Journal 13 317
[24] Goldfarb D 1970 Mathematics of Computation 24 23
[25] Shanno D F 1970 Mathematics of Computation 24 657
[26] Ching W Y, Xu Y N and French R H 1996 Phys. Rev. B 54 13546
[27] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[29] Zhu T and Gao S P 2014 J. Phys. Chem. C 118 11385
[30] Atomistix ToolKit version 2014.3, QuantumWise A/S (www.quantumwise.com)
[31] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[32] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[33] Birch F 1947 Phys. Rev. B 71 809
[34] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[35] Lu W, Wang H, Hu Y, Huang H and Gu H 2009 Physica B 404 79
[36] Delogoz E, Ozisik H, Colakoglu K, Surucu G and Ciftci Y O 2011 J. Alloy Compd. 509 1711
[37] Ozisik H, Deligoz E, Colakoglu K and Ciftci Y O 2011 Com. Mat. Sci. 50 1057
[38] Ozisik H, Deligoz E, Colakoglu K and Surucu G 2010 Phys. Status Solidi 4 347
[39] Ateser E, Ozisik H, Colakoglu K and Deligoz E 2011 Com. Mat. Sci. 50 3208
[40] Born M and Huang K 1982 Dynamical Theory and Experiment Springer, Vol. 1
[41] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 1
[42] Reuss Von A 1929 Z. Angew Math. Mech. 9 149
[43] Voight W 1928 Lehrbuch der Kristallphysik: Verlag und Druck, Von B. G. Teubner in Leipzig und Berlin 9 62
[44] Hill R 1952 Proc. Phys. Soc. 65 349
[45] Simmons G and Wang H 1971 Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, (Cambridge: MIT Press)
[46] Bannikov V V, Shein I R and Ivanovskii A L 2007 Phys. Stat. Sol. 3 89
[47] Fu H, Li D, Peng F, Gao T and Cheng X 2008 Comp. Mat. Sci. 44 774
[48] Clark Stewart J, Segall Matthew D, Pickard Chris J, Hasnip Phil J, Probert Matt I J, Refson K and Payne M C 2005 Z. Kristallogr 220 567
[49] Caravaca M A, Mino J C, Perez V J, Casali R A and Ponce C A 2009 J. Phys.: Condens. Matter 21 1
[50] Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823
[51] Tvergaard V and Hutchinson J W 1988 J. Am. Chem. Soc. 71 157
[52] Tripathy S K and Kumar V 2014 Material Science and Engineering B 182 52
[53] Chung D H, Buessem W R, Vahldiek F W and Mersol S A 1968 (New York: Plenum Press)
[54] Chen X Q, Niu H, Li D and Li Y 2011 Intermettalics 19 1275
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[7] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[8] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[9] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[10] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[11] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[12] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[13] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[14] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[15] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
No Suggested Reading articles found!