CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structural, electronic, and mechanical properties of cubic TiO2: A first-principles study |
Debashish Dash1, Chandan K Pandey1, Saurabh Chaudhury1, Susanta K Tripathy2 |
1 Department of Electrical Engineering, National Institute of Technology, Silchar, Assam 788010, India; 2 Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, Assam 788010, India |
|
|
Abstract We present an analysis of structural, electronic, and mechanical properties of cubic titanium dioxide (TiO2) using an all electron orthogonalzed linear combinations of atomic orbitals (OLCAO) basis set under the framework of density functional theory (DFT). The structural property, especially the lattice constant a, and the electronic properties such as the band diagram and density of states (DOS) are studied and analyzed. The mechanical properties such as bulk moduli, shear moduli, Young's Moduli, and Poison's ratio are also investigated thoroughly. The calculations are carried out on shear moduli and anisotropy factor for cubic TiO2. The Vickers hardness is also tested for fluorite and pyrite cubic-structured TiO2. Furthermore, the results are compared with the previous theoretical and experimental results. It is found that DFT-based simulation produces results which are approximation to experimental results, whereas the calculated elastic constants are better than the previous theoretical and experimental values.
|
Received: 01 August 2017
Revised: 29 September 2017
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
Corresponding Authors:
Debashish Dash
E-mail: debashishdashnits@gmail.com
|
Cite this article:
Debashish Dash, Chandan K Pandey, Saurabh Chaudhury, Susanta K Tripathy Structural, electronic, and mechanical properties of cubic TiO2: A first-principles study 2018 Chin. Phys. B 27 017102
|
[1] |
J Z Zhao, G T Wang and Y C Liang 2008 Chin. Phys. Lett. 25 4356
|
[2] |
Landmann M, Rauls E and Schmidt W G 2012 J. Phys.: Condens. Matter 24 1
|
[3] |
Fan L B, Zhang P, Has S, Wang Y X, Liu P D, Wang W and Yao Y G 2007 Physics 36
|
[4] |
Xie H, Hou W and Bai W 2005 Physics 34
|
[5] |
Wang J H, Li Z P, Liu B and Liu B B 2017 Chin. Phys. B 26 026101
|
[6] |
Wang X, Shi Z and Jiang J 2009 Physics 38
|
[7] |
Wan L, Cao L, Zhang W H, Han Y Y, Chen T X, Liu L Y, Guo P P, Feng J Y and Xu F Q 2012 Acta Phys. Sin. 61 186801 (in Chinese)
|
[8] |
Miloua R, Kebbab Z, Benramdane N, Khadraoui M and Chiker F 2011 Computational Material Science 50 2142
|
[9] |
Jun L Q, Zhang N C, Liu F S and Liu Z T 2014 Phys. Scr. 89 1
|
[10] |
Zhou X F, Dong X, Qian G R, Zhang L, Tian Y and Wang H T 2010 Phys. Rev. B 82 1
|
[11] |
Zhang J, Zhou P, Liu J and Yu J 2014 Phys. Chem. Chem. Phys. 16 20382
|
[12] |
Mahmood T, Cao C, Tahir M, Idrees F, Ahmed M, Tanveer M, Aslam I, Usman Z, Ali Z and Hussain S 2013 Physica B 420 74
|
[13] |
Liang Y, Zhang B and Zhao J 2008 Phys. Rev. B 77 1
|
[14] |
Kong X G, Yu Y and Gao T 2010 Eur. Phys. J. B. 76 365
|
[15] |
Swamy V and Muddle B C 2007 Phys. Rev. Lett. 98 035502
|
[16] |
Mattesini M, Almeida J S de, Dubrovinsky L, Dubrovinskaia N, Johansson B and Ahuja R 2004 Phys. Rev. B 70 115101
|
[17] |
Mattesini M, Almeida J S de, Dubrovinsky L, Dubrovinskaia N, Johansson B and Ahuja R 2004 Phys. Rev. B 70 212101
|
[18] |
Kim D Y, Almeida J S de, Koci L and Ahuja R 2007 Appl. Phys. Lett. 90 171903
|
[19] |
Wang Y Y, Ding J H, Liu W B, Huang S S, Ke X Q, Wang Y Z, Zhang C and Zhao J J 2017 Chin. Phys. B 26 026102
|
[20] |
Hu X L, Zhao R X, Luo Y and Song Q G 2017 Chin. Phys. B 26 023101
|
[21] |
Muscat J, Swamy V and Harrison N M 2002 Phys. Rev. B 65 224112
|
[22] |
Broyden C G 1970 J. Inst. Maths Applics 6 76
|
[23] |
Fletcher R 1970 Computer Journal 13 317
|
[24] |
Goldfarb D 1970 Mathematics of Computation 24 23
|
[25] |
Shanno D F 1970 Mathematics of Computation 24 657
|
[26] |
Ching W Y, Xu Y N and French R H 1996 Phys. Rev. B 54 13546
|
[27] |
Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
|
[28] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[29] |
Zhu T and Gao S P 2014 J. Phys. Chem. C 118 11385
|
[30] |
Atomistix ToolKit version 2014.3, QuantumWise A/S (www.quantumwise.com)
|
[31] |
Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
|
[32] |
Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
|
[33] |
Birch F 1947 Phys. Rev. B 71 809
|
[34] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
|
[35] |
Lu W, Wang H, Hu Y, Huang H and Gu H 2009 Physica B 404 79
|
[36] |
Delogoz E, Ozisik H, Colakoglu K, Surucu G and Ciftci Y O 2011 J. Alloy Compd. 509 1711
|
[37] |
Ozisik H, Deligoz E, Colakoglu K and Ciftci Y O 2011 Com. Mat. Sci. 50 1057
|
[38] |
Ozisik H, Deligoz E, Colakoglu K and Surucu G 2010 Phys. Status Solidi 4 347
|
[39] |
Ateser E, Ozisik H, Colakoglu K and Deligoz E 2011 Com. Mat. Sci. 50 3208
|
[40] |
Born M and Huang K 1982 Dynamical Theory and Experiment Springer, Vol. 1
|
[41] |
Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 1
|
[42] |
Reuss Von A 1929 Z. Angew Math. Mech. 9 149
|
[43] |
Voight W 1928 Lehrbuch der Kristallphysik: Verlag und Druck, Von B. G. Teubner in Leipzig und Berlin 9 62
|
[44] |
Hill R 1952 Proc. Phys. Soc. 65 349
|
[45] |
Simmons G and Wang H 1971 Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, (Cambridge: MIT Press)
|
[46] |
Bannikov V V, Shein I R and Ivanovskii A L 2007 Phys. Stat. Sol. 3 89
|
[47] |
Fu H, Li D, Peng F, Gao T and Cheng X 2008 Comp. Mat. Sci. 44 774
|
[48] |
Clark Stewart J, Segall Matthew D, Pickard Chris J, Hasnip Phil J, Probert Matt I J, Refson K and Payne M C 2005 Z. Kristallogr 220 567
|
[49] |
Caravaca M A, Mino J C, Perez V J, Casali R A and Ponce C A 2009 J. Phys.: Condens. Matter 21 1
|
[50] |
Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823
|
[51] |
Tvergaard V and Hutchinson J W 1988 J. Am. Chem. Soc. 71 157
|
[52] |
Tripathy S K and Kumar V 2014 Material Science and Engineering B 182 52
|
[53] |
Chung D H, Buessem W R, Vahldiek F W and Mersol S A 1968 (New York: Plenum Press)
|
[54] |
Chen X Q, Niu H, Li D and Li Y 2011 Intermettalics 19 1275
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|