Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 104211    DOI: 10.1088/1674-1056/21/10/104211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Incident particle range dependence of radiation damage in a power bipolar junction transistor

Liu Chao-Ming (刘超铭), Li Xing-Ji (李兴冀), Geng Hong-Bin (耿洪滨), Rui Er-Ming (芮二明), Guo Li-Xin (郭立新), Yang Jian-Qun (杨剑群)
School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  The characteristic degradations in silicon NPN bipolar junction transistors (BJTs) of type 3DD155 are examined under the irradiations of 25-MeV carbon (C), 40-MeV silicon (Si), and 40-MeV chlorine (Cl) ions respectively. Different electrical parameters are measured in-situ during the exposure of heavy ions. The experimental data shows that the changes in the reciprocal of the gain variation (Δ (1/β )) of 3DD155 transistors irradiated respectively by 25-MeV C, 40-MeV Si, and 40-MeV Cl ions each present a nonlinear behaviour at a low fluence and a linear response at a high fluence. The Δ (1/β) of 3DD155 BJT irradiated by 25-MeV C ions is greatest at a given fluence, a little smaller when the device is irradiated by 40-MeV Si ions, and smallest in the case of the 40-MeV Cl ions irradiation. The measured and calculated results clearly show that the range of heavy ions in the base region of BJT affects the level of radiation damage.
Keywords:  radiation effects      ionization damage      displacement damage      transistors  
Received:  15 January 2012      Revised:  24 February 2012      Accepted manuscript online: 
PACS:  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. HIT.KLOF.2010003) and the National Basis Research Program of China (Grant No. 51320).
Corresponding Authors:  Li Xing-Ji     E-mail:  lxj0218@hit.edu.cn

Cite this article: 

Liu Chao-Ming (刘超铭), Li Xing-Ji (李兴冀), Geng Hong-Bin (耿洪滨), Rui Er-Ming (芮二明), Guo Li-Xin (郭立新), Yang Jian-Qun (杨剑群) Incident particle range dependence of radiation damage in a power bipolar junction transistor 2012 Chin. Phys. B 21 104211

[1] Kulkarni S R, Ravindra M, Joshi G R and Damle R 2006 Nucl. Instru. Method B 251 157
[2] Kamh S A and Solman F A S 2006 Nucl. Instru. Method A 564 463
[3] Raymond J P and Petersen E L 1987 IEEE Trans. Nucl. Sci. NS-34 1622
[4] Johnston A H, Swift G M and Rax B G 1994 IEEE Trans. Nucl. Sci. 41 2427
[5] Manghisoni M, Ratti L, Re V, Speziali V, Traversi G and Fallica G 2004 Nucl. Instru. Method A 518 477
[6] Al-Mohamad A and Chahoud M 2005 Nucl. Instru. Method A 538 703
[7] Li X J, Xiao J D, Liu C M, Zhao Z M, Geng H B, Lan M J, Yang D Z and He S Y 2010 Nucl. Instru. Method A 621 707
[8] Summers G P, Burke E A and Xapsos M A 1995 Radiat. Meas. 24 1
[9] Messenger S R, Burke E A, Summers G P and Walters R J 2002 IEEE Trans. Nucl. Sci. 49 2690
[10] Bielejec E, Vizkelethy G, Kolb N R, King D B and Doyle B L 2006 IEEE Trans. Nucl. Sci. 53 3681
[11] Ratti L, Manghisoni M, Oberti E, Re V, Speziali V, Traversi G, Fallica G and Modica R 2005 IEEE Trans. Nucl. Sci. 52 1040
[12] Li X J, Geng H B, Lan M J, Yang D Z, He S Y and Liu C M 2010 Chin. Phys. B 19 056103
[13] Li X J, Geng H B, Liu C M, Zhao Z M, Lan M J, Yang D Z and He S Y 2009 Nucl. Instru. Method A 612 171
[14] Li X J, Geng H B, Lan M J, Liu C M, Yang D Z and He S Y 2010 Physica B 405 1489
[15] Li X J, Geng H B, Liu C M, Zhao Z M, Lan M J, Yang D Z and He S Y 2010 IEEE Trans. Nucl. Sci. 57 831
[16] Li X J, Geng H B, Lan M J, Yang D Z, He S Y and Liu C M 2010 Chin. Phys. B 19 066103
[17] Messenger S R, Burke E A, Summers G P and Walters R J 2002 IEEE Trans. Nucl. Sci. 49 2690
[18] Messenger G C and Ash M S 1992 The Effects of Radiation on Electronic Systems 2nd edn. (New York: Van Nostrand Reinhold) pp. 192-265
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[3] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[4] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[5] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[6] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[7] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[8] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[9] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[10] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[11] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[12] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[13] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[14] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[15] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
No Suggested Reading articles found!