Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 066103    DOI: 10.1088/1674-1056/19/6/066103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Degradation mechanisms of current gain in NPN transistors

Li Xing-Ji(李兴冀)a)†, Geng Hong-Bin(耿洪滨)a), Lan Mu-Jie(兰慕杰)b), Yang De-Zhuang(杨德庄)a), He Shi-Yu(何世禹) a), and Liu Chao-Ming(刘超铭)a)
a Space Materials and Environment Engineering Laboratory, Harbin Institute of Technology, Harbin 150001, China; b School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
Abstract  An investigation of ionization and displacement damage in silicon NPN bipolar junction transistors (BJTs) is presented. The transistors were irradiated separately with 90-keV electrons, 3-MeV protons and 40-MeV Br ions. Key parameters were measured in-situ and the change in current gain of the NPN BJTS was obtained at a fixed collector current ($I_{\rm c}=1$ mA). To characterise the radiation damage of NPN BJTs, the ionizing dose $D_{\rm i}$ and displacement dose $D_{\rm d}$ as functions of chip depth in the NPN BJTs were calculated using the SRIM and Geant4 code for protons, electrons and Br ions, respectively. Based on the discussion of the radiation damage equation for current gain, it is clear that the current gain degradation of the NPN BJTs is sensitive to both ionization and displacement damage. The degradation mechanism of the current gain is related to the ratio of $D_{\rm d}/(D_{\rm d}+D_{\rm i}$) in the sensitive region given by charged particles. The irradiation particles leading to lower $D_{\rm d}/(D_{\rm d}+D_{\rm i}$) within the same chip depth at a given total dose would mainly produce ionization damage to the NPN BJTs. On the other hand, the charged particles causing larger $D_{\rm d}/(D_{\rm d}+D_{\rm i})$ at a given total dose would tend to generate displacement damage to the NPN BJTs. The Messenger--Spratt equation could be used to describe the experimental data for the latter case.
Keywords:  radiation effects      ionization damage      displacement damage      transistors  
Received:  17 September 2009      Accepted manuscript online: 
PACS:  85.30.Pq (Bipolar transistors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  61.80.Fe (Electron and positron radiation effects)  
  61.80.Jh (Ion radiation effects)  
Fund: Project supported by the National Basic Research Program of China (Grant No.~61343).

Cite this article: 

Li Xing-Ji(李兴冀), Geng Hong-Bin(耿洪滨), Lan Mu-Jie(兰慕杰), Yang De-Zhuang(杨德庄), He Shi-Yu(何世禹), and Liu Chao-Ming(刘超铭) Degradation mechanisms of current gain in NPN transistors 2010 Chin. Phys. B 19 066103

[1] Summers G P, Burke E A, Dale C J, Wolicki E A, Marshall P W and Gehlhausen M A 1987 IEEE Trans. Nucl. Sci. 34 1134
[2] Dinesh C M, Ramani, Radhakrishna M C, Dutt R N, Khan S A and Kanjilal D 2008 Nucl. Instrum. Meth. B 266 1713
[3] Zhang Y R, Zhang B, Li Z H, Lai C J and Li Z J 2009 Chin. Phys. B 18 763
[4] Minson E, Sanchez I, Barnaby H J, Pease R L, Platteter D G and Dunham G 2004 IEEE Trans. Nucl. Sci. 51 3723
[5] Gao X, Yang S S, Xue Y X, Li K, Li D M, Wang Y, Wang Y F and Feng Z Z 2009 Chin. Phys. B 18 5015
[6] Pease R L 2003 IEEE Trans. Nucl. Sci. 50 539
[7] Kosiert S L, Schrimpft R D, Nowlintt R N, Fleetwood D M, DeLaus M, Pease R L, Combsw W E, Weit A and Chait F 1993 IEEE Trans. Nucl. Sci. 40 1276
[8] Yan B P and Luo J S 1996 Chin. Phys. 5 923
[9] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P and Ferlet-Cavrois V 2008 IEEE Trans. Nucl. Sci. 55 1833
[10] Oldham T R and McLean F B 2003 IEEE Trans. Nucl. Sci. 50 486
[11] He B P, Chen W and Wang G Zh 2006 Acta Phys. Sin. 55 3546 (in Chinese)
[12] Li D M, Wang Z H, Huang L Y and Gou Q J 2007 Chin. Phys. 16 3760
[13] Mandi\'c I, Cindro V, Kramberger G, Kri\v{s tof E S, Miku\v{z M, Vrta\v cnik D, Ullan M and Anghinolfi F 2004 IEEE Trans. Nucl. Sci. 51 1752
[14] Vuppala S, Li C, Zwicknagl P and Subramanian S 2003 IEEE Trans. Nucl. Sci. 50 1846
[15] Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S and Adell P 2007 IEEE Trans. Nucl. Sci. 54 1913
[16] Kamh S A and Solman F A S 2006 Nucl. Instrum. Meth. A 564 463
[17] Kulkarni S R, Ravindra M, Joshi G R and Damle R 2006 Nucl. Instrum. Meth. B 251 157
[18] Raymond J P and Petersen E L 1987 IEEE Trans. Nucl. Sci. NS-\textbf{34 1622
[19] Johnston A H, Swift G M and Rax B G 1994 IEEE Trans. Nucl. Sci. 41 2427
[20] Zheng Y Z, Lu W, Ren D Y, Wang Y Y, Guo Q, Yu X F and He C F 2009 Acta Phys. Sin. 58 5572 (in Chinese)
[21] Ziegler J F 2004 Nucl. Instrum. Meth. B 219-220 1027 SRIM web site: http://www.SRIM.org
[22] Agostinelli S et al. (GEANT4 Collaboration) 2003 Nucl. Instrum. Meth. A 506 250\\ Geant4 web site: http://cern.ch/geant4
[23] Messenger G C 1992 IEEE Trans. Nucl. Sci. 39 470
[24] Messenger G C and Ash M S 1992 The Effects of Radiation on Electronic Systems 2nd ed. (New York: Van Nostrand Reinhold) p.~225
[25] Nowlin R N, Enlow E W, Schrimpf R D and Combs W E 1992 IEEE Trans. Nucl. Sci. 39 2026
[26] Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3107
[27] Paillet P, Schwank J R, Shaneyfelt M R, Ferlet-Cavrois V, Jones R L, Flament O and Blackmore E W 2002 IEEE Trans. Nucl. Sci. 49 2656
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[3] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[4] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[5] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[6] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[7] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[8] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[9] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[10] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[11] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[12] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[13] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[14] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[15] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
No Suggested Reading articles found!