CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van der Waals heterostructure |
Xin-Wu Zhang(张心悟), Da-Wei He(何大伟), Jia-Qi He(何佳琪), Si-Qi Zhao(赵思淇), Sheng-Cai Hao(郝生财), Yong-Sheng Wang(王永生), Li-Xin Yi(衣立新) |
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract We report the fabrication and photocarrier dynamics in graphene-MoSe2 heterostructures. The samples were fabricated by mechanical exfoliation and manual stacking techniques. Ultrafast laser measurements were performed on the heterostructure and MoSe2 monolayer samples. By comparing the results, we conclude that photocarriers injected in MoSe2 of the heterostructure transfer to graphene on an ultrafast time scale. The carriers in graphene alter the optical absorption coefficient of MoSe2. These results illustrate the potential applications of this material in optoelectronic devices.
|
Received: 28 April 2017
Revised: 11 June 2017
Accepted manuscript online:
|
PACS:
|
72.80.Ga
|
(Transition-metal compounds)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
78.47.jb
|
(Transient absorption)
|
|
78.47.jg
|
(Time resolved reflection spectroscopy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275058, 61527817, 61335006, and 61378073), the National Science Foundation, China (Grant No. DMR-1505852), the National Basic Research Program of China (Grant Nos. 2016YFA0202300 and 2016YFA0202302), and Beijing Science and Technology Committee, China (Grant No. Z151100003315006). |
Corresponding Authors:
Li-Xin Yi
E-mail: lxyi@bjtu.edu.cn
|
Cite this article:
Xin-Wu Zhang(张心悟), Da-Wei He(何大伟), Jia-Qi He(何佳琪), Si-Qi Zhao(赵思淇), Sheng-Cai Hao(郝生财), Yong-Sheng Wang(王永生), Li-Xin Yi(衣立新) Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van der Waals heterostructure 2017 Chin. Phys. B 26 097202
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[3] |
Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
|
[4] |
Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
|
[5] |
Jin Q, Dong H M, Han K and Wang X F 2015 Acta Phys. Sin. 64 237801 (in Chinese)
|
[6] |
Stoller M D, Park S, Zhu Y, An J and Ruoff R S 2008 Nano Lett. 8 3498
|
[7] |
Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y and Jiao Z 2009 Chem. Mater. 21 3136
|
[8] |
Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z and Chen Y 2008 ACS Nano 2 463
|
[9] |
Chen H, Müller M B, Gilmore K J, Wallace G G and Li D 2008 Adv. Mater. 20 3557
|
[10] |
Wang X, Zhi L and Müllen K 2008 Nano Lett. 8 323
|
[11] |
Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W and Chen Y 2008 Adv. Mater. 20 3924
|
[12] |
Liang Z J, Liu H X, Niu Y X and Yin Y H 2016 Acta Phys. Sin. 65 138501 (in Chinese)
|
[13] |
Geim A K and Novoselov K S 2007 Nat.Mater. 6 183
|
[14] |
Geim A K 2009 Science 324 1530
|
[15] |
Liu H L, Shen C C, Su S H, Hsu C L, Li M Y and Li L J 2014 Appl. Phys. Lett. 105 201905
|
[16] |
He K, Kumar N, Zhao L, Wang Z, Mak K F, Zhao H and Shan J 2014 Phys. Rev. Lett. 113 026803
|
[17] |
Zeng F, Zhang W B and Tang B Y 2015 Chin. Phys. B 24 097103
|
[18] |
Britnell L, Gorbachev R, Jalil R, Belle B, Schedin F, Mishchenko A, Georgiou T, Katsnelson M, Eaves L and Morozov S 2012 Science 335 947
|
[19] |
Jiang J W and Park H S 2014 Appl. Phys. Lett. 105 033108
|
[20] |
Elder R M, Neupane M R and Chantawansri T L 2015 Appl. Phys. Lett. 107 073101
|
[21] |
Ebnonnasir A, Narayanan B, Kodambaka S and Ciobanu C V 2014 Appl. Phys. Lett. 105 031603
|
[22] |
Coy Diaz H, Avila J, Chen C, Addou R, Asensio M C and Batzill M 2015 Nano Lett. 15 1135
|
[23] |
Jin W, Yeh P C, Zaki N, Chenet D, Arefe G, Hao Y, Sala A, Mentes T O, Dadap J I and Locatelli A 2015 Phys. Rev. B 92 201409
|
[24] |
Pierucci D, Henck H, Avila J, Balan A, Naylor C H, Patriarche G, Dappe Y J, Silly M G, Sirotti F and Johnson A C 2016 Nano Lett. 16 4054
|
[25] |
Ulstrup S, Čabo A G, Miwa J A, Riley J M, Gronborg S S, Johannsen J C, Cacho C, Alexander O, Chapman R T and Springate E 2016 ACS Nano 10 6315
|
[26] |
Wei Y, Ma XG, Zhu L, He H and Huang CY 2017 Acta Phys. Sin. 66 087101 (in Chinese)
|
[27] |
Yu W J, Li Z, Zhou H, Chen Y, Wang Y, Huang Y and Duan X 2013 Nat.Mater. 12 246
|
[28] |
Moriya R, Yamaguchi T, Inoue Y, Morikawa S, Sata Y, Masubuchi S and Machida T 2014 Appl. Phys. Lett. 105 083119
|
[29] |
Yamaguchi T, Moriya R, Inoue Y, Morikawa S, Masubuchi S, Watanabe K, Taniguchi T and Machida T 2014 Appl. Phys. Lett. 105 223109
|
[30] |
Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L and He J H 2014 Sci. Rep. 4 3826
|
[31] |
Moriya R, Yamaguchi T, Inoue Y, Sata Y, Morikawa S, Masubuchi S and Machida T 2015 Appl. Phys. Lett. 106 223103
|
[32] |
Sata Y, Moriya R, Morikawa S, Yabuki N, Masubuchi S and Machida T 2015 Appl. Phys. Lett. 107 023109
|
[33] |
Joiner C A, Campbell P M, Tarasov A A, Beatty B R, Perini C J, Tsai M Y, Ready W J and Vogel E M 2016 ACS Appl. Mater. Inter. 8 8702
|
[34] |
Wang Z, Ki D K, Chen H, Berger H, MacDonald A H and Morpurgo A F 2015 Nat. Commun. 6 9339
|
[35] |
Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim YJ, Gholinia A, Haigh S J and Makarovsky O 2013 Nat. Nanotechnol. 8 100
|
[36] |
Shanmugam M, Jacobs-Gedrim R, Song E S and Yu B 2014 Nanoscale 6 12682
|
[37] |
Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney A, Gholinia A, Watanabe K, Taniguchi T, Haigh S, Geim A and Tartakovskii A 2015 Nat. Mater. 14 301
|
[38] |
Tan H, Fan Y, Zhou Y, Chen Q, Xu W and Warner J H 2016 ACS Nano 10 7866
|
[39] |
Kim K, Larentis S, Fallahazad B, Lee K, Xue J, Dillen D C, Corbet C M and Tutuc E 2015 ACS Nano 9 4527
|
[40] |
Li Y, Qin J K, Xu C Y, Cao J, Sun Z Y, Ma L P, Hu PA, Ren W C and Zhen L 2016 Adv. Funct. Mater. 26 4319
|
[41] |
Vishwanath S, Liu X, Rouvimov S, Mende P C, Azcatl A, McDonnell S, Wallace R M, Feenstra R M, Furdyna J K and Jena D 2015 2D Mater. 2 024007
|
[42] |
Shim G W, Yoo K, Seo S B, Shin J, Jung D Y, Kang I S, Ahn C W, Cho B J and Choi S Y 2014 ACS Nano 8 6655
|
[43] |
Ji J T, Zhang A M, Xia T L, Gao P, Jie Y H, Zhang Q and Zhang Q M 2016 Chin. Phys. B 25 077802
|
[44] |
Shin B, Zhu Y, Bojarczuk N A, Chey S J and Guha S 2012 Appl. Phys. Lett. 101 053903
|
[45] |
Shin B, Bojarczuk N A and Guha S 2013 Appl. Phys. Lett. 102 091907
|
[46] |
Shi Y, Hua C, Li B, Fang X, Yao C, Zhang Y, Hu Y S, Wang Z, Chen L and Zhao D 2013 Adv. Funct. Mater. 23 1832
|
[47] |
Guo Y and Robertson J 2016 Appl. Phys. Lett. 108 233104
|
[48] |
Yu YJ, Zhao Y, Ryu S, Brus L E, Kim K S and Kim P 2009 Nano Lett. 9 3430
|
[49] |
Beal A R and Hughes H P 1979 J. Phys. C: Solid State Phys. 12 881
|
[50] |
Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H 2014 Phys. Rev. B 89 125427
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|