|
|
First-principles study of solute diffusion in Ni3Al |
Shaohua Liu(刘少华)1, Zi Li(李孜)2, Chongyu Wang(王崇愚)3 |
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3 Department of Physics, Tsinghua University, Beijing 100084, China |
|
|
Abstract Using first-principles calculations in combination with Wagner-Schottky and kinetic Monte Carlo methods, the diffusion behaviors of solutes via various vacancy-mediated diffusion mechanisms in L12 γ'-Ni3Al were investigated. The formation energies of the point defects and the migration energies for solutes were calculated. Adding alloying elements can decrease the defect-formation energies of Nim Al, increase the defect-formation energies of AlNi, and have little effect on the formation energy of VNi. The migration energies of solutes are related with the site preference and the diffusion mechanism. The diffusion coefficients of Ni, Al, and solutes were calculated, and the concentration of antisite defects plays a crucial role in the elemental diffusion.
|
Received: 03 June 2017
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20
|
|
|
66.30.-h
|
(Diffusion in solids)
|
|
Fund: Project supported by Beijing Municipality Science and Technology Commission, China (Grant No. D161100002416001) and the National Key R&D Program of China (Grant No. 2017YFB0701502). |
Corresponding Authors:
Chongyu Wang
E-mail: cywang@mail.tsinghua.edu.cn
|
Cite this article:
Shaohua Liu(刘少华), Zi Li(李孜), Chongyu Wang(王崇愚) First-principles study of solute diffusion in Ni3Al 2017 Chin. Phys. B 26 093102
|
[1] |
Reed R C 2006 The Superalloys: Fundamentals and Applications (New York: Cambridge University Press)
|
[2] |
Pollock T M 2016 Nat. Mater. 15 809
|
[3] |
Suzuki A, Inui H and Pollock T M 2015 Annu. Rev. Mater. Res. 45 345
|
[4] |
Jiang L, Li S and Han Y 2017 IOP Conf. Ser.: Mater. Sci. Eng. 182 012059
|
[5] |
Liu Z and Gao W 2001 Oxid. Met. 55 481
|
[6] |
Nathal M V and Ebert L J 1985 Metall. Trans. A 16 1863
|
[7] |
Mishima Y, Ochiai S, Hamao N, Yodogawa M and Suzuki T 1986 Transactions of the Japan Institute of Metals 27 648
|
[8] |
Kamaraj M 2003 Sadhana 28 115
|
[9] |
Kovarik L, Unocic R R, Li J and Mills M J 2009 JOM 61 42
|
[10] |
Eggeler Y M, Müller J, Titus M S, Suzuki A, Pollock T M and Spiecker E 2016 Acta Mater. 113 335
|
[11] |
Titus M S, Mottura A, Babu Viswanathan G, Suzuki A, Mills M J and Pollock T M 2015 Acta Mater. 89 423
|
[12] |
Divinski S V, Frank S, Södervall U and Herzig C 1998 Acta Mater. 46 4369
|
[13] |
Cserháti C, Szabó I A, Márton Z and Erdélyi G 2002 Intermetallics 10 887
|
[14] |
Shi Y, Frohberg G and Wever H 1995 Phys. Stat. Sol. A 152 361
|
[15] |
Fujiwara K and Horita Z 2002 Acta Mater. 50 1571
|
[16] |
Cserháti C, Paul A, Kodentsov A A, van Dal M J H and van Loo F J J 2003 Intermetallics 11 291
|
[17] |
Minamino Y, Yoshida H, Jung S B, Hirao K and Yamane T 1997 Defect and Diffusion Forum 143-147 257
|
[18] |
Chen C, Zhang L, Xin J, Wang Y, Du Y, Luo F, Zhang Z, Xu T and Long J 2015 J. Alloys Compd. 645 259
|
[19] |
Moniruzzaman M, Fukaya H, Murata Y, Tanaka K and Inui H 2012 Materials Transactions 53 2111
|
[20] |
Mabruri E, Sakurai S, Murata Y, Koyama T and Morinaga M 2008 Materials Transactions 49 1441
|
[21] |
Garimella N, Ode M, Ikeda M, Murakami H and Sohn Y H 2009 J. Phase Equilib. Diffus. 30 246
|
[22] |
Ikeda T, Almazouzi A, Numakura H, Koiwa M, Sprengel W and Nakajima H 1998 Acta Mater. 46 5369
|
[23] |
Watanabe M, Horita Z and Nemoto M 1997 Defect and Diffusion Forum 143-147 345
|
[24] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[25] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[26] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[27] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[28] |
Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
|
[29] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[30] |
Mehrer H 2007 Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Process (New York: Springer Berlin Heidelberg)
|
[31] |
Schottky W and Wagner C 1931 Zeitschr. Phys. Chem. B 11 163
|
[32] |
Jiang C, Sordelet D J and Gleeson B 2006 Acta Mater. 54 1147
|
[33] |
Eyring H 1935 J. Chem. Phys. 3 107
|
[34] |
Vineyard G H 1957 J. Phys. Chem. Solids 3 121
|
[35] |
Hänggi P, Talkner P and Borkovec M 1990 Rev. Mod. Phys. 62 251
|
[36] |
Sun M, Li Z, Zhu G Z, Liu W Q, Liu S H and Wang C Y 2016 Commun. Comput. Phys. 20 603
|
[37] |
Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
|
[38] |
Voter A F 2007 Radiation Effects in Solids (Dordrecht: Springer Netherlands) pp. 1-23
|
[39] |
Zhang X, Deng H, Xiao S, Tang J, Deng L and Hu W 2014 J. Alloys Compd. 612 361
|
[40] |
Gopal P and Srinivasan S G 2012 Phys. Rev. B 86 014112
|
[41] |
Yu S, Wang C Y, Yu T and Cai J 2007 Physica B 396 138
|
[42] |
Badura-Gergen K and Schaefer H E 1997 Phys. Rev. B 56 3032
|
[43] |
Numakura H, Ikeda T, M K and Almazouzi A 1998 Philos. Mag. A 77 887
|
[44] |
Wang T M, Shimotomai M and Doyama M 1984 J. Phys. F: Met. Phys. 14 37
|
[45] |
Gupta D 2005 Diffusion Processes in Advanced Technological Materials (Heidelberg: Springer Berlin Heidelberg)
|
[46] |
Kao C R and Chang Y A 1993 Intermetallics 1 237
|
[47] |
Divinski S V and Larikov L N 1997 J. Phys.: Condens. Matter 9 7873
|
[48] |
Chen G X, Wang D D, Zhang J M, Huo H P and Xu K W 2008 Physica B 403 3538
|
[49] |
Zhang X and Wang C Y 2009 Acta Mater. 57 224
|
[50] |
Liu S H, Liu C P, Liu W Q, Zhang X N, Yan P and Wang C Y 2016 Philos. Mag. 96 2204
|
[51] |
Liu S, Liu C, Ge L, Zhang X, Yu T, Yan P and Wang C 2017 Scr. Mater. Submitted
|
[52] |
Ruban A V and Skriver H L 1997 Phys. Rev. B 55 856
|
[53] |
Jiang C and Gleeson B 2006 Scr. Mater. 55 433
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|